Skip to main content
Top

2020 | OriginalPaper | Chapter

Microneedle-Based Sensor Systems for Real-Time Continuous Transdermal Monitoring of Analytes in Body Fluids

Authors : Edina Vranić, Amina Tucak, Merima Sirbubalo, Ognjenka Rahić, Alisa Elezović, Jasmina Hadžiabdić

Published in: CMBEBIH 2019

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microneedles, tiny micron-sized structures, made of a variety of materials, have been recently developed for a painless and safe transdermal delivery of drugs through the skin. While microneedles minimally disrupt the outermost layer of the skin and create a pathway to deliver the therapeutic agents, they could also act as conduits for biosignal sensing. Microneedle-based sensors made of conductive and electrochemically reactive biomaterials can provide the valuable information on the levels of analytes in the blood. Also, researchers have realized the great potential of microneedles integrated with microelectrodes for extraction of interstitial fluid and capillary blood, for enhanced monitoring of patient health. Furthermore, they could serve as a tool for analysis of complex medical conditions and illnesses. This microneedle sensor technology can provide a sophisticated analytical approach for in situ and simultaneous detection of numerous analytes. The microneedles can also be used to measure metabolites, biomarkers, and drug level in the interstitial fluid and capillary blood, as well as for the use of microneedle array technology as biosensors for continuous monitoring of analytes in body fluids.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Prausnitz, M.R., Allen, M.G., Gujral, I.J.: Microneedle device for extraction and sensing of bodily fluids. US007344499 Prausnitz, M.R., Allen, M.G., Gujral, I.J.: Microneedle device for extraction and sensing of bodily fluids. US007344499
2.
go back to reference Cahill, E., O’Cearbhaill, E.: Toward biofunctional microneedles for stimulus-responsive drug delivery. Bioconjug. Chem. 26, 1289–1296 (2015)CrossRef Cahill, E., O’Cearbhaill, E.: Toward biofunctional microneedles for stimulus-responsive drug delivery. Bioconjug. Chem. 26, 1289–1296 (2015)CrossRef
3.
go back to reference Sachdeva, V., Banga, A.K.: Microneedles and their applications. Recent Pat. Drug Deliv. Form, 5(2), 95–132 (2011)CrossRef Sachdeva, V., Banga, A.K.: Microneedles and their applications. Recent Pat. Drug Deliv. Form, 5(2), 95–132 (2011)CrossRef
4.
go back to reference Donnelly, R., Mooney, K., Caffarel-Salvador, E., Torrisi, B., Eltayib, E., McElnay, J.: Microneedle-mediated minimally invasive patient monitoring. Ther. Drug Monit. 36(1), 10–17 (2013) Donnelly, R., Mooney, K., Caffarel-Salvador, E., Torrisi, B., Eltayib, E., McElnay, J.: Microneedle-mediated minimally invasive patient monitoring. Ther. Drug Monit. 36(1), 10–17 (2013)
5.
go back to reference Li, C., Lee, C., Lee, K., Jung, H.: An optimized hollow microneedle for minimally invasive blood extraction. Biomed. Microdevices 15, 17–25 (2012)CrossRef Li, C., Lee, C., Lee, K., Jung, H.: An optimized hollow microneedle for minimally invasive blood extraction. Biomed. Microdevices 15, 17–25 (2012)CrossRef
6.
go back to reference McGrew, R., MeGrew, M.: Encyclopedia of Medical History. McGraw Hill, New York (1985)CrossRef McGrew, R., MeGrew, M.: Encyclopedia of Medical History. McGraw Hill, New York (1985)CrossRef
7.
go back to reference Romanyuk, A., Zvezdin, V., Samant, P., Grenader, M., Zemlyanova, M., Prausnitz, M.: Collection of analytes from microneedle patches. Anal. Chem. 86(21), 10520–10523 (2014)CrossRef Romanyuk, A., Zvezdin, V., Samant, P., Grenader, M., Zemlyanova, M., Prausnitz, M.: Collection of analytes from microneedle patches. Anal. Chem. 86(21), 10520–10523 (2014)CrossRef
8.
go back to reference Williams, A.: Transdermal and topical drug delivery. From theory to clinical practice. 1st edn, pp. 3–45. Pharmaceutical Press, London (2003) Williams, A.: Transdermal and topical drug delivery. From theory to clinical practice. 1st edn, pp. 3–45. Pharmaceutical Press, London (2003)
9.
go back to reference Cass, A., Sharma, S.: Microneedle enzyme sensor arrays for continuous in vivo monitoring. Methods Enzymol. 589, 413–427 (2017)CrossRef Cass, A., Sharma, S.: Microneedle enzyme sensor arrays for continuous in vivo monitoring. Methods Enzymol. 589, 413–427 (2017)CrossRef
10.
go back to reference El-Laboudi, A., Oliver, N., Cass, A., Johnston, D.: Use of microneedle array devices for continuous glucose monitoring: a review. Diabetes Technol. Ther. 15(1), 101–115 (2013)CrossRef El-Laboudi, A., Oliver, N., Cass, A., Johnston, D.: Use of microneedle array devices for continuous glucose monitoring: a review. Diabetes Technol. Ther. 15(1), 101–115 (2013)CrossRef
11.
go back to reference Kaushik, S., Hord, A.H., Denson, D.D., McAllister, D.V., Smitra, S., Allen, M.G., et al.: Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92(2), 502–504 (2001)CrossRef Kaushik, S., Hord, A.H., Denson, D.D., McAllister, D.V., Smitra, S., Allen, M.G., et al.: Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92(2), 502–504 (2001)CrossRef
12.
go back to reference Caffarel-Salvador, E., Brady, A., Eltayib, E., Meng, T., Alonso-Vicente, A., Gonzalez-Vazquez, P., et al.: Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS One. 10(12), e0145644 (2015)CrossRef Caffarel-Salvador, E., Brady, A., Eltayib, E., Meng, T., Alonso-Vicente, A., Gonzalez-Vazquez, P., et al.: Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS One. 10(12), e0145644 (2015)CrossRef
13.
go back to reference Yadav, D.J., Vaidya, K.A., Kulkarni, P.R., Raut, R.A.: Microneedles: promising technique for transdermal drug delivery. Int. J. Pharm. Bio. Sci. 2(1), 684–708 (2011) Yadav, D.J., Vaidya, K.A., Kulkarni, P.R., Raut, R.A.: Microneedles: promising technique for transdermal drug delivery. Int. J. Pharm. Bio. Sci. 2(1), 684–708 (2011)
14.
go back to reference Nagamine, K., Kubota, J., Kai, H., Ono, Y., Nishizawa, M.: An array of porous microneedles for transdermal monitoring of intercellular swelling. Biomed. Microdevices 19(3), 68 (2017)CrossRef Nagamine, K., Kubota, J., Kai, H., Ono, Y., Nishizawa, M.: An array of porous microneedles for transdermal monitoring of intercellular swelling. Biomed. Microdevices 19(3), 68 (2017)CrossRef
15.
go back to reference Donnelly, R.F., Singh, T.R., Garland, M.J., Migalska, K., Majithiya, R., McCrudden, C.M. et al.: Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater 22(23), 4879–4890 (2012)CrossRef Donnelly, R.F., Singh, T.R., Garland, M.J., Migalska, K., Majithiya, R., McCrudden, C.M. et al.: Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater 22(23), 4879–4890 (2012)CrossRef
16.
go back to reference Valdés-Ramírez, G., Li, Y., Kim, J., Jia, W., Bandodkar, A., Nuñez-Flores, R., et al.: Microneedle-based self-powered glucose sensor. Electrochem. Commun. 47, 58–62 (2014)CrossRef Valdés-Ramírez, G., Li, Y., Kim, J., Jia, W., Bandodkar, A., Nuñez-Flores, R., et al.: Microneedle-based self-powered glucose sensor. Electrochem. Commun. 47, 58–62 (2014)CrossRef
17.
go back to reference Windmiller, J., Zhou, N., Chuang, M., Valdés-Ramírez, G., Santhosh, P., Miller, P., et al.: Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst 136(9), 1846–1851 (2011)CrossRef Windmiller, J., Zhou, N., Chuang, M., Valdés-Ramírez, G., Santhosh, P., Miller, P., et al.: Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst 136(9), 1846–1851 (2011)CrossRef
18.
go back to reference Wang, P., Cornwell, M., Prausnitz, M.: Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Ther. 7(1), 131–141 (2005)CrossRef Wang, P., Cornwell, M., Prausnitz, M.: Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Ther. 7(1), 131–141 (2005)CrossRef
19.
go back to reference Miller, P., Gittard, S., Edwards, T., Lopez, D., Xiao, X., Wheeler, D., et al.: Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 5(1), 13415 (2011)CrossRef Miller, P., Gittard, S., Edwards, T., Lopez, D., Xiao, X., Wheeler, D., et al.: Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 5(1), 13415 (2011)CrossRef
20.
go back to reference Kolli, C.S.: Microneedles: bench to bedside. Ther Deliv. 6(9), 1081–1088 (2015)CrossRef Kolli, C.S.: Microneedles: bench to bedside. Ther Deliv. 6(9), 1081–1088 (2015)CrossRef
21.
go back to reference Miller, P.R., Narayan, R.J., Polsky, R.: Microneedle-based sensors for medical diagnosis. J. Mater. Chem. B 4(8), 1379–1383 (2016)CrossRef Miller, P.R., Narayan, R.J., Polsky, R.: Microneedle-based sensors for medical diagnosis. J. Mater. Chem. B 4(8), 1379–1383 (2016)CrossRef
22.
go back to reference Chaudhri, B., Ceyssens, F., De Moor, P., Van Hoof, C., Puers, R.: A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. J. Micromechd Microeng. 20(6), 064006 (2010)CrossRef Chaudhri, B., Ceyssens, F., De Moor, P., Van Hoof, C., Puers, R.: A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. J. Micromechd Microeng. 20(6), 064006 (2010)CrossRef
23.
go back to reference Justino, C.I., Rocha-Santos, T.A., Duarte, A.C.: Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends. Analyt. Chem. 29(10), 1172–1183 (2010)CrossRef Justino, C.I., Rocha-Santos, T.A., Duarte, A.C.: Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends. Analyt. Chem. 29(10), 1172–1183 (2010)CrossRef
24.
go back to reference Vaddiraju, S., Tomazos, I., Burgess, D.J., Jain, F.C., Papadimitrakopoulos, F.: Emerging synergy between nanotechnology and implantable biosensors: A review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)CrossRef Vaddiraju, S., Tomazos, I., Burgess, D.J., Jain, F.C., Papadimitrakopoulos, F.: Emerging synergy between nanotechnology and implantable biosensors: A review. Biosens. Bioelectron. 25(7), 1553–1565 (2010)CrossRef
25.
go back to reference Strambini, L.M., Longo, A., Scarano, S., Prescimone, T., Palchetti, I., Minunni, M., et al.: Selfpowered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosens. Bioelectron. 66, 162–168 (2015)CrossRef Strambini, L.M., Longo, A., Scarano, S., Prescimone, T., Palchetti, I., Minunni, M., et al.: Selfpowered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosens. Bioelectron. 66, 162–168 (2015)CrossRef
26.
go back to reference Mukherjee, E., Collins, S., Isseroff, R., Smith, R.: Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens. Actuators A Phys. 114, 267–275 (2004)CrossRef Mukherjee, E., Collins, S., Isseroff, R., Smith, R.: Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens. Actuators A Phys. 114, 267–275 (2004)CrossRef
27.
go back to reference Tsuchiya, K., Nakanishi, N., Uetsuji, Y., Nakamachi, E.: Development of blood extraction system for health monitoring system. Biomed. Microdevices 7(4), 347–353 (2005)CrossRef Tsuchiya, K., Nakanishi, N., Uetsuji, Y., Nakamachi, E.: Development of blood extraction system for health monitoring system. Biomed. Microdevices 7(4), 347–353 (2005)CrossRef
28.
go back to reference Jina, A., Tierney, M.J., Tamada, J.A., McGill, S., Desai, S., Chua, B., et al.: Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol. 8(3), 483–487 (2014)CrossRef Jina, A., Tierney, M.J., Tamada, J.A., McGill, S., Desai, S., Chua, B., et al.: Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol. 8(3), 483–487 (2014)CrossRef
29.
go back to reference Sharma, S., Huang, Z., Rogers, M., Boutelle, M., Cass, A.E.: Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring. Anal. Bional. Chem. 408, 8427–8435 (2016)CrossRef Sharma, S., Huang, Z., Rogers, M., Boutelle, M., Cass, A.E.: Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring. Anal. Bional. Chem. 408, 8427–8435 (2016)CrossRef
30.
go back to reference Hwa, K.-Y., Subramani, B., Chang, P.-W., Chien, M., Huang, J.-T.: Transdermal microneedle array-based sensor for real time continuous glucose monitoring. Int. J. Electrochem. Sci. 10, 2455–2466 (2015) Hwa, K.-Y., Subramani, B., Chang, P.-W., Chien, M., Huang, J.-T.: Transdermal microneedle array-based sensor for real time continuous glucose monitoring. Int. J. Electrochem. Sci. 10, 2455–2466 (2015)
31.
go back to reference Zhou, J.X., Tang, L.N., Liang, F.X., Wang, H., Li, Y.T., Zhang, G.J.: MoS2/Pt nanocomposite-functionalized microneedle for real-time monitoring of hydrogen peroxide release from living cells. Analyst 142(22), 4322–4329 (2017)CrossRef Zhou, J.X., Tang, L.N., Liang, F.X., Wang, H., Li, Y.T., Zhang, G.J.: MoS2/Pt nanocomposite-functionalized microneedle for real-time monitoring of hydrogen peroxide release from living cells. Analyst 142(22), 4322–4329 (2017)CrossRef
32.
go back to reference Esfandyarpour, R., Javanmard, M., Koochak, Z., Esfandyarpour, H., Harris, J.S., Davis, R.W.: Label-free electronic probing of nucleic acids and proteins at the nanoscale using the nanoneedle biosensor. Biomicrofluidics 7, 044114 (2013)CrossRef Esfandyarpour, R., Javanmard, M., Koochak, Z., Esfandyarpour, H., Harris, J.S., Davis, R.W.: Label-free electronic probing of nucleic acids and proteins at the nanoscale using the nanoneedle biosensor. Biomicrofluidics 7, 044114 (2013)CrossRef
33.
go back to reference Bollella, P., Sharma, S., Cass, A.E., Antiochia, R.: Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 123, 152–159 (2019)CrossRef Bollella, P., Sharma, S., Cass, A.E., Antiochia, R.: Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 123, 152–159 (2019)CrossRef
34.
go back to reference Dardano, P., Calio, A., Di Palma, V., Bavilacqua, M.F., Di Matteo, A., De Stefano, L.: Multianalyte biosensor patch based on polymeric microneedles. 2018. In: Andò, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano P. (eds.) Sensors. CNS 2016. Lecture Notes in Electrical Engineering, vol 431, pp. 73–81. Springer, Cham Dardano, P., Calio, A., Di Palma, V., Bavilacqua, M.F., Di Matteo, A., De Stefano, L.: Multianalyte biosensor patch based on polymeric microneedles. 2018. In: Andò, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano P. (eds.) Sensors. CNS 2016. Lecture Notes in Electrical Engineering, vol 431, pp. 73–81. Springer, Cham
35.
go back to reference Li, C.G., Joung, H.-A., Noh, H., Song, M.-B., Kim, M.-G., Jung, H.: One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab Chip 15(6), 3286–3292 (2015)CrossRef Li, C.G., Joung, H.-A., Noh, H., Song, M.-B., Kim, M.-G., Jung, H.: One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor. Lab Chip 15(6), 3286–3292 (2015)CrossRef
36.
go back to reference Campbell, A.S., Kim, J., Wang, J.: Wearable electrochemical alcohol biosensors. Curr. Opin Electrochem. 10, 126–135 (2018)CrossRef Campbell, A.S., Kim, J., Wang, J.: Wearable electrochemical alcohol biosensors. Curr. Opin Electrochem. 10, 126–135 (2018)CrossRef
37.
go back to reference Chinnadayyala, S.R., Park, I., Cho, S.: Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Mikrochim. Acta 185(5), 250 (2018)CrossRef Chinnadayyala, S.R., Park, I., Cho, S.: Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Mikrochim. Acta 185(5), 250 (2018)CrossRef
38.
go back to reference Ng, K.W., Moghimi, S.M.: Skin biosensing and bioanalysis: what the future holds. Prec. Nanomed 1(2), 125–127 (2018) Ng, K.W., Moghimi, S.M.: Skin biosensing and bioanalysis: what the future holds. Prec. Nanomed 1(2), 125–127 (2018)
39.
go back to reference Lee, J.-H., Seo, Y., Lim, T.-S., Bishop, P.L., Papautsky, I.: MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. Environ. Sci. Technol. 41, 7857–7863 (2007)CrossRef Lee, J.-H., Seo, Y., Lim, T.-S., Bishop, P.L., Papautsky, I.: MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. Environ. Sci. Technol. 41, 7857–7863 (2007)CrossRef
40.
go back to reference Whitson, R.C.: Hollow microneedle patch. US20020006355 Whitson, R.C.: Hollow microneedle patch. US20020006355
41.
go back to reference Gonnelli, R.R.: Microneedle with membrane. US20090043250 Gonnelli, R.R.: Microneedle with membrane. US20090043250
42.
go back to reference Gattiker, G., Kaler, K.I., Mintchev, M.: Electronic Mosquito: designing a semi-invasive Microsystem for blood sampling, analysis and drug delivery applications. Microsyst. Technol. 12(1–2), 44–51 (2005)CrossRef Gattiker, G., Kaler, K.I., Mintchev, M.: Electronic Mosquito: designing a semi-invasive Microsystem for blood sampling, analysis and drug delivery applications. Microsyst. Technol. 12(1–2), 44–51 (2005)CrossRef
43.
go back to reference Zimmermann, S., Fienbork, D., Stoeber, B., Flounders, A., Liepmann, D.: In-device enzyme immobilization: wafer-level fabrication of an integrated glucose sensor. Sens. Actuators B Chem. 99(1), 163–173 (2003)CrossRef Zimmermann, S., Fienbork, D., Stoeber, B., Flounders, A., Liepmann, D.: In-device enzyme immobilization: wafer-level fabrication of an integrated glucose sensor. Sens. Actuators B Chem. 99(1), 163–173 (2003)CrossRef
44.
go back to reference Guy, R.: Diagnostic devices: Managing diabetes through the skin. Nat. Nanotechnol. 11(6), 493–494 (2016)CrossRef Guy, R.: Diagnostic devices: Managing diabetes through the skin. Nat. Nanotechnol. 11(6), 493–494 (2016)CrossRef
45.
go back to reference Gupta, V.K., Singh, A.K., Kumawat, L.K.: Thiazole Schiff base turn-on fluorescent chemosensor for Al3 + ion. Sens. Actuators B Chem. 195, 98–108 (2014)CrossRef Gupta, V.K., Singh, A.K., Kumawat, L.K.: Thiazole Schiff base turn-on fluorescent chemosensor for Al3 + ion. Sens. Actuators B Chem. 195, 98–108 (2014)CrossRef
Metadata
Title
Microneedle-Based Sensor Systems for Real-Time Continuous Transdermal Monitoring of Analytes in Body Fluids
Authors
Edina Vranić
Amina Tucak
Merima Sirbubalo
Ognjenka Rahić
Alisa Elezović
Jasmina Hadžiabdić
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-17971-7_26