Skip to main content
Top
Published in:

27-12-2022 | Technical Article

Microstructural and Mechanical Evaluation of Pure Copper Rods Processed by Severe Plastic Deformation Method of Hydrostatic Cyclic Extrusion Compression

Authors: Armin Siahsarani, Ghader Faraji, Babak Zare Damirchi, Ali Beigzadeh

Published in: Journal of Materials Engineering and Performance | Issue 19/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, a severe plastic deformation method of hydrostatic cyclic extrusion compression (HCEC) was used to produce ultrafine-grained copper rods. The process was applied up to two cycles on annealed copper rods and microstructural and mechanical properties of the produced specimens were investigated. The optical and transmission electron microscopy results revealed a notable decrease in the grain size of the sample after the HCEC process. The average grain size of the copper sample after the second cycle of the process reached ~ 292 nm compared to the initial size of ~ 32 μm. Mechanical investigations revealed a considerable increase in the strength and hardness of the samples. The ultimate tensile strength of the copper rods increased to 441.7 MPa after the second pass of the process. Also, the microhardness value increased \(\sim\) 73.4% compared to the initial sample. Generally, HCEC is a notable technique to produce ultrafine-grained copper rods with high lengths and superior characteristics, which can fulfill the requirements of different industries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference O.R. Adetunji, M.L. Olukuade, W. Simka, M. Sowa, O.M. Adesusi, and I.K. Okediran, Production and Characterization of Amorphous Aluminum-Copper Alloy for Aerospace Applications, Eur. J. Eng. Technol. Res., 2017, 2, p 1–5. CrossRef O.R. Adetunji, M.L. Olukuade, W. Simka, M. Sowa, O.M. Adesusi, and I.K. Okediran, Production and Characterization of Amorphous Aluminum-Copper Alloy for Aerospace Applications, Eur. J. Eng. Technol. Res., 2017, 2, p 1–5. CrossRef
2.
go back to reference J.H. Michel, I. Richardson, C. Powell, and B. Phull, Development of Copper Alloys for Seawater Service from Traditional Application to State-of-the Art Engineering, in Corrosion 2017, OnePetro (2017) J.H. Michel, I. Richardson, C. Powell, and B. Phull, Development of Copper Alloys for Seawater Service from Traditional Application to State-of-the Art Engineering, in Corrosion 2017, OnePetro (2017)
3.
go back to reference S. Kadiyan and B. Dehiya, Effects of Severe Plastic Deformation by ECAP on the Microstructure and Mechanical Properties of a Commercial Copper Alloy, Mater. Res. Exp., 2019, 11, p 116570. CrossRef S. Kadiyan and B. Dehiya, Effects of Severe Plastic Deformation by ECAP on the Microstructure and Mechanical Properties of a Commercial Copper Alloy, Mater. Res. Exp., 2019, 11, p 116570. CrossRef
4.
go back to reference F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 Magnesium Alloy by Hydrostatic Cyclic Expansion Extrusion at Elevated Temperature as a New Severe Plastic Deformation Method, Int. J. Miner. Metall. Mater., 2020, 27, p 669–677. CrossRef F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 Magnesium Alloy by Hydrostatic Cyclic Expansion Extrusion at Elevated Temperature as a New Severe Plastic Deformation Method, Int. J. Miner. Metall. Mater., 2020, 27, p 669–677. CrossRef
5.
go back to reference A. Raab, E. Bobruk, and G. Raab, Ultrafine-Grained Pure Ti Processed by New SPD Scheme Combining Drawing with Shear, J. Mater. Eng. Perform., 2018, 27, p 2414–2420. CrossRef A. Raab, E. Bobruk, and G. Raab, Ultrafine-Grained Pure Ti Processed by New SPD Scheme Combining Drawing with Shear, J. Mater. Eng. Perform., 2018, 27, p 2414–2420. CrossRef
6.
go back to reference G. Faraji, H.S. Kim, and H.T. Kashi, Severe Plastic Deformation: Methods Processing and Properties, Elsevier, Amsterdam, 2018.CrossRef G. Faraji, H.S. Kim, and H.T. Kashi, Severe Plastic Deformation: Methods Processing and Properties, Elsevier, Amsterdam, 2018.CrossRef
7.
go back to reference M. Rabiee, H. Mirzadeh, and A. Ataie, Processing of Cu-Fe and Cu-Fe-SiC Nanocomposites by Mechanical Alloying, Adv. Powder Technol., 2017, 28, p 1882–1887. CrossRef M. Rabiee, H. Mirzadeh, and A. Ataie, Processing of Cu-Fe and Cu-Fe-SiC Nanocomposites by Mechanical Alloying, Adv. Powder Technol., 2017, 28, p 1882–1887. CrossRef
8.
go back to reference A. Shahmirzaloo, S. Hosseini, A. Siahsarani, D. Rahmatabadi, R. Hashemi, and G. Faraji, Influences of the Constrained Groove Pressing on Microstructural Mechanical, and Fracture Properties of Brass Sheets, Mater. Res. Exp., 2020, 11, p 116526. CrossRef A. Shahmirzaloo, S. Hosseini, A. Siahsarani, D. Rahmatabadi, R. Hashemi, and G. Faraji, Influences of the Constrained Groove Pressing on Microstructural Mechanical, and Fracture Properties of Brass Sheets, Mater. Res. Exp., 2020, 11, p 116526. CrossRef
9.
go back to reference M. Tayyebi, D. Rahmatabadi, A. Karimi, M. Adhami, and R. Hashemi, Investigation of Annealing Treatment on the Interfacial and Mechanical Properties of Al5052/Cu Multilayered Composites Subjected to ARB Process, J. Alloy. Compd., 2021, 871, p 159513. CrossRef M. Tayyebi, D. Rahmatabadi, A. Karimi, M. Adhami, and R. Hashemi, Investigation of Annealing Treatment on the Interfacial and Mechanical Properties of Al5052/Cu Multilayered Composites Subjected to ARB Process, J. Alloy. Compd., 2021, 871, p 159513. CrossRef
10.
go back to reference G. Faraji and H. Kim, Review of Principles and Methods of Severe Plastic Deformation for Producing Ultrafine-grained Tubes, Mater. Sci. Technol., 2017, 33, p 905–923. CrossRef G. Faraji and H. Kim, Review of Principles and Methods of Severe Plastic Deformation for Producing Ultrafine-grained Tubes, Mater. Sci. Technol., 2017, 33, p 905–923. CrossRef
11.
go back to reference K. Abib, J. Balanos, B. Alili, and D. Bradai, On the Microstructure and Texture of Cu-Cr-Zr Alloy after Severe Plastic Deformation by ECAP, Mater. Charact., 2016, 112, p 252–258. CrossRef K. Abib, J. Balanos, B. Alili, and D. Bradai, On the Microstructure and Texture of Cu-Cr-Zr Alloy after Severe Plastic Deformation by ECAP, Mater. Charact., 2016, 112, p 252–258. CrossRef
12.
go back to reference V. Danilenko, S. Sergeev, J. Baimova, G. Korznikova, K. Nazarov, R.K. Khisamov, A. Glezer, and R. Mulyukov, An Approach for Fabrication of Al-Cu Composite by High Pressure Torsion, Mater. Lett., 2019, 236, p 51–55. CrossRef V. Danilenko, S. Sergeev, J. Baimova, G. Korznikova, K. Nazarov, R.K. Khisamov, A. Glezer, and R. Mulyukov, An Approach for Fabrication of Al-Cu Composite by High Pressure Torsion, Mater. Lett., 2019, 236, p 51–55. CrossRef
13.
go back to reference Q. Wang, Y. Chen, M. Liu, J. Lin, and H.J. Roven, Microstructure Evolution of AZ Series Magnesium Alloys during Cyclic Extrusion Compression, Mater. Sci. Eng., A, 2010, 527, p 2265–2273. CrossRef Q. Wang, Y. Chen, M. Liu, J. Lin, and H.J. Roven, Microstructure Evolution of AZ Series Magnesium Alloys during Cyclic Extrusion Compression, Mater. Sci. Eng., A, 2010, 527, p 2265–2273. CrossRef
14.
go back to reference P. Flausino, M. Nassif, F. de Castro Bubani, P. Pereira, M. Aguilar, and P. Cetlin, Microstructural Evolution and Mechanical Behavior of Copper Processed by Low Strain Amplitude Multi-directional Forging, Mater. Sci. Eng. A., 2019, 756, p 474–483. CrossRef P. Flausino, M. Nassif, F. de Castro Bubani, P. Pereira, M. Aguilar, and P. Cetlin, Microstructural Evolution and Mechanical Behavior of Copper Processed by Low Strain Amplitude Multi-directional Forging, Mater. Sci. Eng. A., 2019, 756, p 474–483. CrossRef
15.
go back to reference C. Wang, F. Li, Q. Li, and L. Wang, Numerical and Experimental Studies of Pure Copper Processed by a New Severe Plastic Deformation Method, Mater. Sci. Eng., A, 2012, 548, p 19–26. CrossRef C. Wang, F. Li, Q. Li, and L. Wang, Numerical and Experimental Studies of Pure Copper Processed by a New Severe Plastic Deformation Method, Mater. Sci. Eng., A, 2012, 548, p 19–26. CrossRef
16.
go back to reference M. Eftekhari, G. Faraji, M. Bahrami, and M. Baniassadi, Hydrostatic Tube Cyclic Extrusion Compression as a Novel Severe Plastic Deformation Method for Fabricating Long Nanostructured Tubes, Met. Mater. Int., 2022, 28, p 1725–1740. CrossRef M. Eftekhari, G. Faraji, M. Bahrami, and M. Baniassadi, Hydrostatic Tube Cyclic Extrusion Compression as a Novel Severe Plastic Deformation Method for Fabricating Long Nanostructured Tubes, Met. Mater. Int., 2022, 28, p 1725–1740. CrossRef
17.
go back to reference K. Topolski and W. Pachla, and H. Garbacz, Progress in Hydrostatic Extrusion of Titanium, J. Mater. Sci., 2013, 48, p 4543–4548. CrossRef K. Topolski and W. Pachla, and H. Garbacz, Progress in Hydrostatic Extrusion of Titanium, J. Mater. Sci., 2013, 48, p 4543–4548. CrossRef
18.
go back to reference A. Siahsarani, F. Samadpour, M.H. Mortazavi, and G. Faraji, Microstructural, Mechanical and Corrosion Properties of AZ91 Magnesium Alloy Processed by a Severe Plastic Deformation Method of Hydrostatic Cyclic Expansion Extrusion, Met. Mater. Int., 2020, 27, p 2933–2946. CrossRef A. Siahsarani, F. Samadpour, M.H. Mortazavi, and G. Faraji, Microstructural, Mechanical and Corrosion Properties of AZ91 Magnesium Alloy Processed by a Severe Plastic Deformation Method of Hydrostatic Cyclic Expansion Extrusion, Met. Mater. Int., 2020, 27, p 2933–2946. CrossRef
19.
go back to reference A. Siahsarani and G. Faraji, Hydrostatic Cyclic Extrusion Compression (HCEC) Process; a New CEC Counterpart for Processing Long Ultrafine-grained Metals, Arch. Civil Mech. Eng., 2020, 20, p 1–13. CrossRef A. Siahsarani and G. Faraji, Hydrostatic Cyclic Extrusion Compression (HCEC) Process; a New CEC Counterpart for Processing Long Ultrafine-grained Metals, Arch. Civil Mech. Eng., 2020, 20, p 1–13. CrossRef
20.
go back to reference A. Siahsarani and G. Faraji, Processing and Characterization of AZ91 Magnesium Alloys via a Novel Severe Plastic Deformation Method: Hydrostatic Cyclic Extrusion Compression (HCEC), Trans. Nonferrous Met. Soc. China, 2021, 31, p 1303–1321. CrossRef A. Siahsarani and G. Faraji, Processing and Characterization of AZ91 Magnesium Alloys via a Novel Severe Plastic Deformation Method: Hydrostatic Cyclic Extrusion Compression (HCEC), Trans. Nonferrous Met. Soc. China, 2021, 31, p 1303–1321. CrossRef
21.
go back to reference M. Eftekhari, G. Faraji, and M. Bahrami, Processing of Commercially Pure Copper Tubes by Hydrostatic Tube Cyclic Extrusion-Compression (HTCEC) as a New SPD Method, Arch. Civil Mech. Eng., 2021, 21, p 1–12. CrossRef M. Eftekhari, G. Faraji, and M. Bahrami, Processing of Commercially Pure Copper Tubes by Hydrostatic Tube Cyclic Extrusion-Compression (HTCEC) as a New SPD Method, Arch. Civil Mech. Eng., 2021, 21, p 1–12. CrossRef
22.
go back to reference F. Samadpour, A. Siahsarani, G. Faraji, and M. Bahrami, Experimental and Finite Element Analyses of the Hydrostatic Cyclic Expansion Extrusion (HCEE) Process with Back-pressure, J. Ultrafine Grained Nanostructured Mater., 2019, 52, p 25–31. F. Samadpour, A. Siahsarani, G. Faraji, and M. Bahrami, Experimental and Finite Element Analyses of the Hydrostatic Cyclic Expansion Extrusion (HCEE) Process with Back-pressure, J. Ultrafine Grained Nanostructured Mater., 2019, 52, p 25–31.
23.
go back to reference A. Babaei and M. Mashhadi, Tubular Pure Copper Grain Refining by Tube Cyclic Extrusion-Compression (TCEC) as a Severe Plastic Deformation Technique, Prog. Nat. Sci.: Mater. Int., 2014, 24, p 623–630. CrossRef A. Babaei and M. Mashhadi, Tubular Pure Copper Grain Refining by Tube Cyclic Extrusion-Compression (TCEC) as a Severe Plastic Deformation Technique, Prog. Nat. Sci.: Mater. Int., 2014, 24, p 623–630. CrossRef
24.
go back to reference X. An, S. Wu, Z. Wang, and Z. Zhang, Enhanced Cyclic Deformation Responses of Ultrafine-grained Cu and Nanocrystalline Cu–Al alloys, Acta Mater., 2014, 74, p 200–214. CrossRef X. An, S. Wu, Z. Wang, and Z. Zhang, Enhanced Cyclic Deformation Responses of Ultrafine-grained Cu and Nanocrystalline Cu–Al alloys, Acta Mater., 2014, 74, p 200–214. CrossRef
25.
go back to reference S.R. Bahadori, K. Dehghani, and F. Bakhshandeh, Microstructure, Texture and Mechanical Properties of Pure Copper Processed by ECAP and Subsequent Cold Rolling, Mater. Sci. Eng., A, 2013, 583, p 36–42. CrossRef S.R. Bahadori, K. Dehghani, and F. Bakhshandeh, Microstructure, Texture and Mechanical Properties of Pure Copper Processed by ECAP and Subsequent Cold Rolling, Mater. Sci. Eng., A, 2013, 583, p 36–42. CrossRef
26.
go back to reference N. Pardis, C. Chen, R. Ebrahimi, L.S. Toth, C. Gu, B. Beausir, and L. Kommel, Microstructure, Texture and Mechanical Properties of Cyclic Expansion-Extrusion Deformed Pure Copper, Mater. Sci. Eng., A, 2015, 628, p 423–432. CrossRef N. Pardis, C. Chen, R. Ebrahimi, L.S. Toth, C. Gu, B. Beausir, and L. Kommel, Microstructure, Texture and Mechanical Properties of Cyclic Expansion-Extrusion Deformed Pure Copper, Mater. Sci. Eng., A, 2015, 628, p 423–432. CrossRef
27.
go back to reference M. Richert, J. Richert, A. Hotloś, W. Pachla, and J. Skiba, Structure and Properties of Copper Deformed by Severe Plastic Deformation Methods, J. Achiev. Mater. Manuf. Eng., 2011, 44, p 50–56. M. Richert, J. Richert, A. Hotloś, W. Pachla, and J. Skiba, Structure and Properties of Copper Deformed by Severe Plastic Deformation Methods, J. Achiev. Mater. Manuf. Eng., 2011, 44, p 50–56.
28.
go back to reference J. Xu, J. Li, D. Shan, and B. Guo, Microstructural Evolution and Micro/meso-Deformation Behavior in Pure Copper Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng., A, 2016, 664, p 114–125. CrossRef J. Xu, J. Li, D. Shan, and B. Guo, Microstructural Evolution and Micro/meso-Deformation Behavior in Pure Copper Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng., A, 2016, 664, p 114–125. CrossRef
29.
go back to reference G. Purcek, O. Saray, M. Nagimov, A. Nazarov, I. Safarov, V. Danilenko, O. Valiakhmetov, and R. Mulyukov, Microstructure and Mechanical Behavior of UFG Copper Processed by ECAP Following Different Processing Regimes, Phil. Mag., 2012, 92, p 690–704. CrossRef G. Purcek, O. Saray, M. Nagimov, A. Nazarov, I. Safarov, V. Danilenko, O. Valiakhmetov, and R. Mulyukov, Microstructure and Mechanical Behavior of UFG Copper Processed by ECAP Following Different Processing Regimes, Phil. Mag., 2012, 92, p 690–704. CrossRef
30.
go back to reference M.Y. Alawadhi, S. Sabbaghianrad, Y. Huang, and T.G. Langdon, Direct Influence of Recovery Behaviour on Mechanical Properties in Oxygen-Free Copper Processed using Different SPD Techniques: HPT and ECAP, J. Market. Res., 2017, 6, p 369–377. M.Y. Alawadhi, S. Sabbaghianrad, Y. Huang, and T.G. Langdon, Direct Influence of Recovery Behaviour on Mechanical Properties in Oxygen-Free Copper Processed using Different SPD Techniques: HPT and ECAP, J. Market. Res., 2017, 6, p 369–377.
31.
go back to reference R. Kocich, M. Greger, M. Kursa, I. Szurman, and A. Macháčková, Twist Channel Angular Pressing (TCAP) as a Method for Increasing the Efficiency of SPD, Mater. Sci. Eng., A, 2010, 527, p 6386–6392. CrossRef R. Kocich, M. Greger, M. Kursa, I. Szurman, and A. Macháčková, Twist Channel Angular Pressing (TCAP) as a Method for Increasing the Efficiency of SPD, Mater. Sci. Eng., A, 2010, 527, p 6386–6392. CrossRef
32.
go back to reference N. Lugo, N. Llorca, J. Cabrera, and Z. Horita, Microstructures and Mechanical Properties of Pure Copper Deformed Severely by Equal-channel Angular Pressing and High Pressure Torsion, Mater. Sci. Eng., A, 2008, 477, p 366–371. CrossRef N. Lugo, N. Llorca, J. Cabrera, and Z. Horita, Microstructures and Mechanical Properties of Pure Copper Deformed Severely by Equal-channel Angular Pressing and High Pressure Torsion, Mater. Sci. Eng., A, 2008, 477, p 366–371. CrossRef
33.
go back to reference A. Babaei, G. Faraji, M. Mashhadi, and M. Hamdi, Repetitive Forging (RF) using Inclined Punches as a New Bulk Severe Plastic Deformation Method, Mater. Sci. Eng., A, 2012, 558, p 150–157. CrossRef A. Babaei, G. Faraji, M. Mashhadi, and M. Hamdi, Repetitive Forging (RF) using Inclined Punches as a New Bulk Severe Plastic Deformation Method, Mater. Sci. Eng., A, 2012, 558, p 150–157. CrossRef
34.
go back to reference K. Edalati, T. Fujioka, and Z. Horita, Microstructure and Mechanical Properties of Pure Cu Processed by High-pressure Torsion, Mater. Sci. Eng., A, 2008, 497, p 168–173. CrossRef K. Edalati, T. Fujioka, and Z. Horita, Microstructure and Mechanical Properties of Pure Cu Processed by High-pressure Torsion, Mater. Sci. Eng., A, 2008, 497, p 168–173. CrossRef
35.
go back to reference M. Shamsborhan and M. Ebrahimi, Production of Nanostructure Copper by Planar Twist Channel Angular Extrusion Process, J. Alloy. Compd., 2016, 682, p 552–556. CrossRef M. Shamsborhan and M. Ebrahimi, Production of Nanostructure Copper by Planar Twist Channel Angular Extrusion Process, J. Alloy. Compd., 2016, 682, p 552–556. CrossRef
36.
go back to reference M. Motallebi Savarabadi, G. Faraji, and M. Eftekhari, Microstructure and Mechanical Properties of the Commercially Pure Copper Tube after Processing by Hydrostatic Tube Cyclic Expansion Extrusion (HTCEE), Met. Mater. Int., 2021, 27, p 1686–1700. CrossRef M. Motallebi Savarabadi, G. Faraji, and M. Eftekhari, Microstructure and Mechanical Properties of the Commercially Pure Copper Tube after Processing by Hydrostatic Tube Cyclic Expansion Extrusion (HTCEE), Met. Mater. Int., 2021, 27, p 1686–1700. CrossRef
37.
go back to reference F. Hamdi and S. Asgari, Influence of Stacking Fault Energy and Short-range Ordering on Dynamic Recovery and Work Hardening Behavior of Copper Alloys, Scr. Mater., 2010, 62, p 693–696. CrossRef F. Hamdi and S. Asgari, Influence of Stacking Fault Energy and Short-range Ordering on Dynamic Recovery and Work Hardening Behavior of Copper Alloys, Scr. Mater., 2010, 62, p 693–696. CrossRef
38.
go back to reference M. Zhang, L. Liu, S. Liang, and J. Li, Evolution in Microstructures and Mechanical Properties of Pure Copper Subjected to Severe Plastic Deformation, Met. Mater. Int., 2020, 26, p 1585–1595. CrossRef M. Zhang, L. Liu, S. Liang, and J. Li, Evolution in Microstructures and Mechanical Properties of Pure Copper Subjected to Severe Plastic Deformation, Met. Mater. Int., 2020, 26, p 1585–1595. CrossRef
39.
go back to reference J. Jiang, T.B. Britton, and A.J. Wilkinson, Accumulation of Geometrically Necessary Dislocations Near Grain Boundaries in Deformed Copper, Philos. Mag. Lett., 2012, 92, p 580–588. CrossRef J. Jiang, T.B. Britton, and A.J. Wilkinson, Accumulation of Geometrically Necessary Dislocations Near Grain Boundaries in Deformed Copper, Philos. Mag. Lett., 2012, 92, p 580–588. CrossRef
40.
go back to reference A. Alateyah, M.M. Ahmed, Y. Zedan, H.A. El-Hafez, M.O. Alawad, and W. El-Garaihy, Experimental and Numerical Investigation of the ECAP Processed Copper: Microstructural Evolution, Crystallogr. Texture Hardness Homog., Met., 2021, 11, p 607. A. Alateyah, M.M. Ahmed, Y. Zedan, H.A. El-Hafez, M.O. Alawad, and W. El-Garaihy, Experimental and Numerical Investigation of the ECAP Processed Copper: Microstructural Evolution, Crystallogr. Texture Hardness Homog., Met., 2021, 11, p 607.
41.
go back to reference M.Y. Alawadhi, S. Sabbaghianrad, Y. Huang, and T.G. Langdon, Evaluating the Paradox of Strength and Ductility in Ultrafine-Grained Oxygen-Free Copper Processed by ECAP at Room Temperature, Mater. Sci. Eng., A, 2021, 802, p 140546. CrossRef M.Y. Alawadhi, S. Sabbaghianrad, Y. Huang, and T.G. Langdon, Evaluating the Paradox of Strength and Ductility in Ultrafine-Grained Oxygen-Free Copper Processed by ECAP at Room Temperature, Mater. Sci. Eng., A, 2021, 802, p 140546. CrossRef
42.
go back to reference A. Afshar and A. Simchi, Flow Stress Dependence on the Grain Size in Alumina Dispersion-Strengthened Copper with a Bimodal Grain Size Distribution, Mater. Sci. Eng., A, 2009, 518, p 41–46. CrossRef A. Afshar and A. Simchi, Flow Stress Dependence on the Grain Size in Alumina Dispersion-Strengthened Copper with a Bimodal Grain Size Distribution, Mater. Sci. Eng., A, 2009, 518, p 41–46. CrossRef
43.
go back to reference S.A. Hosseini and H.D. Manesh, High-Strength, High-Conductivity Ultra-fine Grains Commercial Pure Copper Produced by ARB Process, Mater. Des., 2009, 30, p 2911–2918. CrossRef S.A. Hosseini and H.D. Manesh, High-Strength, High-Conductivity Ultra-fine Grains Commercial Pure Copper Produced by ARB Process, Mater. Des., 2009, 30, p 2911–2918. CrossRef
44.
go back to reference V.Q. Vu, Y. Beygelzimer, L.S. Toth, J.-J. Fundenberger, R. Kulagin, and C. Chen, The Plastic Flow Machining: A New SPD Process for Producing Metal Sheets with Gradient Structures, Mater. Charact., 2018, 138, p 208–214. CrossRef V.Q. Vu, Y. Beygelzimer, L.S. Toth, J.-J. Fundenberger, R. Kulagin, and C. Chen, The Plastic Flow Machining: A New SPD Process for Producing Metal Sheets with Gradient Structures, Mater. Charact., 2018, 138, p 208–214. CrossRef
45.
go back to reference M. Starink, Dislocation Versus Grain Boundary Strengthening in SPD Processed Metals: Non-causal Relation Between Grain Size and Strength of Deformed Polycrystals, Mater. Sci. Eng., A, 2017, 705, p 42–45. CrossRef M. Starink, Dislocation Versus Grain Boundary Strengthening in SPD Processed Metals: Non-causal Relation Between Grain Size and Strength of Deformed Polycrystals, Mater. Sci. Eng., A, 2017, 705, p 42–45. CrossRef
46.
go back to reference A. Fattah-Alhosseini, O. Imantalab, Y. Mazaheri, and M. Keshavarz, Microstructural Evolution, Mechanical properties, and Strain Hardening Behavior of Ultrafine Grained Commercial Pure Copper During the Accumulative Roll Bonding Process, Mater. Sci. Eng., A, 2016, 650, p 8–14. CrossRef A. Fattah-Alhosseini, O. Imantalab, Y. Mazaheri, and M. Keshavarz, Microstructural Evolution, Mechanical properties, and Strain Hardening Behavior of Ultrafine Grained Commercial Pure Copper During the Accumulative Roll Bonding Process, Mater. Sci. Eng., A, 2016, 650, p 8–14. CrossRef
47.
go back to reference A. Taha and F. Hammad, Application of the Hall-Petch Relation to Microhardness Measurements on Al, Cu, Al-MD 105, and Al-Cu Alloys, Phys. Status Solidi, 1990, 119, p 455–462. CrossRef A. Taha and F. Hammad, Application of the Hall-Petch Relation to Microhardness Measurements on Al, Cu, Al-MD 105, and Al-Cu Alloys, Phys. Status Solidi, 1990, 119, p 455–462. CrossRef
48.
go back to reference R. Jamaati and M.R. Toroghinejad, Effect of Stacking Fault Energy on Mechanical Properties of Nanostructured FCC Materials Processed by the ARB Process, Mater. Sci. Eng., A, 2014, 606, p 443–450. CrossRef R. Jamaati and M.R. Toroghinejad, Effect of Stacking Fault Energy on Mechanical Properties of Nanostructured FCC Materials Processed by the ARB Process, Mater. Sci. Eng., A, 2014, 606, p 443–450. CrossRef
Metadata
Title
Microstructural and Mechanical Evaluation of Pure Copper Rods Processed by Severe Plastic Deformation Method of Hydrostatic Cyclic Extrusion Compression
Authors
Armin Siahsarani
Ghader Faraji
Babak Zare Damirchi
Ali Beigzadeh
Publication date
27-12-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 19/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07765-6

Premium Partners