Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 21/2023

23-01-2023 | Technical Article

Microstructural and Mechanical Properties of Cubic Silicon Nitride: Insights from Molecular Dynamics Simulation

Authors: Vinh V. Le, Thi Hinh Dinh, Thao T. Nguyen

Published in: Journal of Materials Engineering and Performance | Issue 21/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Molecular dynamics (MD) simulations have been used to study the mechanical behavior as well as the structural change of cubic (c-) Si3N4 upon uniaxial tensile loading. The Si3N4 sample is simulated under the cooling process and high pressure. At temperature of 300 K, most nitrogen (N) atoms arrange into fcc lattice, and the rest of N atoms have hcp and amorphous (a-) structures. The hcp and a- N atoms gather into a band. Upon uniaxial tensile tests, this c- Si3N4 exhibits elastic and plastic deformations. The fcc and hcp N atoms transform into a- N atoms under tensile loading. The band of a- structure develops and spreads across the sample with increasing strain. The transformation of SiNx units occurs from high to low coordination number in the a- structure. The large simplexes, with radii of 2.0 Å and above, grow and coalesce only in the a- structure during tensile loading, leading to form the porous structure. The formation of porous a- structure causes ductile deformation at high strain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N.E. Christensen and I. Gorczyca, Optical and Structural Properties of III-V Nitrides under Pressure, Phys. Rev. B, 1994, 50(7), p 4397–4415.CrossRef N.E. Christensen and I. Gorczyca, Optical and Structural Properties of III-V Nitrides under Pressure, Phys. Rev. B, 1994, 50(7), p 4397–4415.CrossRef
2.
go back to reference E. Soignard, M. Somayazulu, J. Dong, O.F. Sankey, and P.F. McMillan, High Pressure-High Temperature Synthesis and Elasticity of the Cubic Nitride Spinel γ-Si3N4, J. Phys. Condens. Matter, 2001, 13, p 557–563.CrossRef E. Soignard, M. Somayazulu, J. Dong, O.F. Sankey, and P.F. McMillan, High Pressure-High Temperature Synthesis and Elasticity of the Cubic Nitride Spinel γ-Si3N4, J. Phys. Condens. Matter, 2001, 13, p 557–563.CrossRef
3.
go back to reference E. Sanchez-Gonzalez, P. Miranda, F. Guiberteau, and A. Pajares, Effect of Temperature on the Pre-Creep Mechanical Properties of Silicon Nitride, J. Eur. Ceram. Soc., 2009, 29(12), p 2635–2641.CrossRef E. Sanchez-Gonzalez, P. Miranda, F. Guiberteau, and A. Pajares, Effect of Temperature on the Pre-Creep Mechanical Properties of Silicon Nitride, J. Eur. Ceram. Soc., 2009, 29(12), p 2635–2641.CrossRef
4.
go back to reference K. Chen, Z. Huang, Y. Liu, M. Fang, J. Huang, and Y. Xu, Synthesis of β-Si3N4 Powder from Quartz via Carbothermal Reduction Nitridation, Powder Technol., 2013, 235, p 728–734.CrossRef K. Chen, Z. Huang, Y. Liu, M. Fang, J. Huang, and Y. Xu, Synthesis of β-Si3N4 Powder from Quartz via Carbothermal Reduction Nitridation, Powder Technol., 2013, 235, p 728–734.CrossRef
5.
go back to reference F.L. Riley, Silicon Nitride and Related Materials, J. Am. Ceram. Soc., 2000, 83(2), p 245–265.CrossRef F.L. Riley, Silicon Nitride and Related Materials, J. Am. Ceram. Soc., 2000, 83(2), p 245–265.CrossRef
6.
go back to reference A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fueb, P. Kroll, and R. Boehler, Synthesis of Cubic Silicon Nitride, Nature, 1999, 400, p 340–342.CrossRef A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fueb, P. Kroll, and R. Boehler, Synthesis of Cubic Silicon Nitride, Nature, 1999, 400, p 340–342.CrossRef
7.
go back to reference J.Z. Jiang, F. Kragh, D.J. Frost, K. Stahl, and H. Lindelov, Hardness and Thermal Stability of Cubic Silicon Nitride, J. Phys. Condens. Matter., 2001, 13(22), p L515–L520.CrossRef J.Z. Jiang, F. Kragh, D.J. Frost, K. Stahl, and H. Lindelov, Hardness and Thermal Stability of Cubic Silicon Nitride, J. Phys. Condens. Matter., 2001, 13(22), p L515–L520.CrossRef
8.
go back to reference S. Ma, Y. Zhao, R. Tang, B. Yang, Q. Tao, Y. Li, J. Cheng, Y. Wang, T. Cui, and P. Zhu, Transparent β-Si3N4 and γ-Si3N4 Compacts Synthesized with Mixed-Size Precursor under High Pressure and High Temperature, Appl. Phys. Lett., 2021, 119, p 171904.CrossRef S. Ma, Y. Zhao, R. Tang, B. Yang, Q. Tao, Y. Li, J. Cheng, Y. Wang, T. Cui, and P. Zhu, Transparent β-Si3N4 and γ-Si3N4 Compacts Synthesized with Mixed-Size Precursor under High Pressure and High Temperature, Appl. Phys. Lett., 2021, 119, p 171904.CrossRef
9.
go back to reference A. Zerr, M. Kempf, M. Schwarz, E. Kroke, M. Goken, and R. Riedel, Elastic Moduli and Hardness of Cubic Silicon Nitride, J. Am. Ceram. Soc., 2002, 85(1), p 86–90.CrossRef A. Zerr, M. Kempf, M. Schwarz, E. Kroke, M. Goken, and R. Riedel, Elastic Moduli and Hardness of Cubic Silicon Nitride, J. Am. Ceram. Soc., 2002, 85(1), p 86–90.CrossRef
10.
go back to reference I. Tanaka, F. Oba, T. Sekine, E. Ito, A. Kubo, K. Tatsumi, H. Adachi, and T. Yamamoto, Hardness of Cubic Silicon Nitride, J. Mater. Res., 2002, 17(4), p 731–733.CrossRef I. Tanaka, F. Oba, T. Sekine, E. Ito, A. Kubo, K. Tatsumi, H. Adachi, and T. Yamamoto, Hardness of Cubic Silicon Nitride, J. Mater. Res., 2002, 17(4), p 731–733.CrossRef
11.
go back to reference N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B.N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, Transparent Polycrystalline Cubic Silicon Nitride, Sci. Rep., 2017, 7, p 44755.CrossRef N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B.N. Kim, H. Yoshida, A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, Transparent Polycrystalline Cubic Silicon Nitride, Sci. Rep., 2017, 7, p 44755.CrossRef
12.
go back to reference T. Sekine, H. He, T. Kobayashi, M. Zhang, and F. Xu, Shock-Induced Transformation of β-Si3N4 to a High-Pressure Cubic-Spinel Phase, Appl. Phys. Lett., 2000, 76, p 3706–3708.CrossRef T. Sekine, H. He, T. Kobayashi, M. Zhang, and F. Xu, Shock-Induced Transformation of β-Si3N4 to a High-Pressure Cubic-Spinel Phase, Appl. Phys. Lett., 2000, 76, p 3706–3708.CrossRef
13.
go back to reference H. He, T. Sekine, T. Kobayashi, and H. Hirosaki, Shock-Induced Phase Transition of β−Si3N4 to c−Si3N4, Phys. Rev. B, 2000, 62(17), p 11412–11417.CrossRef H. He, T. Sekine, T. Kobayashi, and H. Hirosaki, Shock-Induced Phase Transition of β−Si3N4 to c−Si3N4, Phys. Rev. B, 2000, 62(17), p 11412–11417.CrossRef
14.
go back to reference T. Sekine, Shock Synthesis of Cubic Silicon Nitride, J. Am. Ceram. Soc., 2002, 85(1), p 113–116.CrossRef T. Sekine, Shock Synthesis of Cubic Silicon Nitride, J. Am. Ceram. Soc., 2002, 85(1), p 113–116.CrossRef
15.
go back to reference H. Yao, Q. Xu and J. Tang, Synthesis and Stability of Cubic Silicon Nitride, Adv. Mater. Res., 2009, 79–82, p 1467–1470.CrossRef H. Yao, Q. Xu and J. Tang, Synthesis and Stability of Cubic Silicon Nitride, Adv. Mater. Res., 2009, 79–82, p 1467–1470.CrossRef
16.
go back to reference N. Nishiyama, J. Langer, T. Sakai, Y. Kojima, A. Holzheid, N.A. Gaida, E. Kulik, N. Hirao, S.I. Kawaguchi, T. Irifune, and Y. Ohishi, Phase Relations in Silicon and Germanium Nitrides up to 98 GPa and 2400 °C, J. Am. Ceram. Soc., 2019, 102(4), p 2195–2202.CrossRef N. Nishiyama, J. Langer, T. Sakai, Y. Kojima, A. Holzheid, N.A. Gaida, E. Kulik, N. Hirao, S.I. Kawaguchi, T. Irifune, and Y. Ohishi, Phase Relations in Silicon and Germanium Nitrides up to 98 GPa and 2400 °C, J. Am. Ceram. Soc., 2019, 102(4), p 2195–2202.CrossRef
17.
go back to reference J.Z. Jiang, H. Lindelov, L. Gerward, K. Stahl, J.M. Recio, P. Mori-Sanchez, S. Carlson, M. Mezouar, E. Dooryhee, A. Fitch, and D.J. Frost, Compressibility and Thermal Expansion of Cubic Silicon Nitride, Phys. Rev. B, 2002, 65, p 161202.CrossRef J.Z. Jiang, H. Lindelov, L. Gerward, K. Stahl, J.M. Recio, P. Mori-Sanchez, S. Carlson, M. Mezouar, E. Dooryhee, A. Fitch, and D.J. Frost, Compressibility and Thermal Expansion of Cubic Silicon Nitride, Phys. Rev. B, 2002, 65, p 161202.CrossRef
18.
go back to reference B. Kiefer, S.R. Shieh, T.S. Duffy, and T. Sekine, Strength, Elasticity, and Equation of State of the Nanocrystalline Cubic Silicon Nitride γ−Si3N4 to 68 GPa, Phys. Rev. B, 2005, 72, p 014102.CrossRef B. Kiefer, S.R. Shieh, T.S. Duffy, and T. Sekine, Strength, Elasticity, and Equation of State of the Nanocrystalline Cubic Silicon Nitride γ−Si3N4 to 68 GPa, Phys. Rev. B, 2005, 72, p 014102.CrossRef
19.
go back to reference P. Kroll and J. von Appen, Post-Spinel Phases of Silicon Nitride, Phys. Status Solidi B, 2001, 226, p R6–R7.CrossRef P. Kroll and J. von Appen, Post-Spinel Phases of Silicon Nitride, Phys. Status Solidi B, 2001, 226, p R6–R7.CrossRef
20.
go back to reference K. Tatsumi, I. Tanaka, and H. Adachi, Theoretical Prediction of Post-Spinel Phases of Silicon Nitride, J. Am. Ceram. Soc., 2002, 85(1), p 7–10.CrossRef K. Tatsumi, I. Tanaka, and H. Adachi, Theoretical Prediction of Post-Spinel Phases of Silicon Nitride, J. Am. Ceram. Soc., 2002, 85(1), p 7–10.CrossRef
21.
go back to reference B.-H. Yu and D. Chen, Investigations of Meta-Stable and Post-Spinel Silicon Nitrides, Physica B, 2012, 407(24), p 4660–4664.CrossRef B.-H. Yu and D. Chen, Investigations of Meta-Stable and Post-Spinel Silicon Nitrides, Physica B, 2012, 407(24), p 4660–4664.CrossRef
22.
go back to reference C. Kocer, N. Hirosaki, and S. Ogata, Ab initio Calculation of the Ideal Tensile and Shear Strength of Cubic Silicon Nitride, Phys. Rev. B, 2003, 67, p 035210.CrossRef C. Kocer, N. Hirosaki, and S. Ogata, Ab initio Calculation of the Ideal Tensile and Shear Strength of Cubic Silicon Nitride, Phys. Rev. B, 2003, 67, p 035210.CrossRef
23.
go back to reference A.K. Shargh, G.R. Madejski, J.L. McGrath, and N. Abdolrahim, Molecular Dynamics Simulations of Brittle to Ductile Transition in Failure Mechanism of Silicon Nitride Nanoporous Membranes, Mater. Today Commun., 2020, 25, p 101657.CrossRef A.K. Shargh, G.R. Madejski, J.L. McGrath, and N. Abdolrahim, Molecular Dynamics Simulations of Brittle to Ductile Transition in Failure Mechanism of Silicon Nitride Nanoporous Membranes, Mater. Today Commun., 2020, 25, p 101657.CrossRef
24.
go back to reference V.V. Le and L.T.H. Lien, Structural and Mechanical Properties of Al2O3.2SiO2 Glass: Insights from Molecular Dynamics Simulations, J. Noncryst. Solids, 2021, 564, p 120840.CrossRef V.V. Le and L.T.H. Lien, Structural and Mechanical Properties of Al2O3.2SiO2 Glass: Insights from Molecular Dynamics Simulations, J. Noncryst. Solids, 2021, 564, p 120840.CrossRef
25.
go back to reference C.M. Marian, M. Gastreich, and J.D. Gale, Empirical Two-Body Potential for Solid Silicon Nitride, Boron Nitride, and Borosilazane Modifications, Phys. Rev. B, 2000, 62(5), p 3117–3124.CrossRef C.M. Marian, M. Gastreich, and J.D. Gale, Empirical Two-Body Potential for Solid Silicon Nitride, Boron Nitride, and Borosilazane Modifications, Phys. Rev. B, 2000, 62(5), p 3117–3124.CrossRef
26.
go back to reference A. Dasmahapatra and P. Kroll, Modeling Amorphous Silicon Nitride: a Comparative Study of Empirical Potentials, Comput. Mater. Sci., 2018, 148, p 165–175.CrossRef A. Dasmahapatra and P. Kroll, Modeling Amorphous Silicon Nitride: a Comparative Study of Empirical Potentials, Comput. Mater. Sci., 2018, 148, p 165–175.CrossRef
27.
go back to reference J. Schiotz, T. Vegge, F.D. Di Tolla, and K.W. Jacobsen, Atomic-Scale Simulations of the Mechanical Deformation of Nanocrystalline Metals, Phys. Rev. B, 1999, 60(17), p 11971–11983.CrossRef J. Schiotz, T. Vegge, F.D. Di Tolla, and K.W. Jacobsen, Atomic-Scale Simulations of the Mechanical Deformation of Nanocrystalline Metals, Phys. Rev. B, 1999, 60(17), p 11971–11983.CrossRef
28.
go back to reference D. Faken and H. Jonsson, Systematic Analysis of Local Atomic Structure Combined with 3D Computer Graphics, Comput. Mater. Sci., 1994, 2(2), p 279–286.CrossRef D. Faken and H. Jonsson, Systematic Analysis of Local Atomic Structure Combined with 3D Computer Graphics, Comput. Mater. Sci., 1994, 2(2), p 279–286.CrossRef
29.
go back to reference J.Z. Jiang, K. Stahl, R.W. Berg, D.J. Frost, T.J. Zhou, and P.X. Shi, Structural Characterization of Cubic Silicon Nitride, Europhys. Lett., 2000, 51(1), p 62–67.CrossRef J.Z. Jiang, K. Stahl, R.W. Berg, D.J. Frost, T.J. Zhou, and P.X. Shi, Structural Characterization of Cubic Silicon Nitride, Europhys. Lett., 2000, 51(1), p 62–67.CrossRef
30.
go back to reference N.W. Wyckoff, Crystal Structures, Vol 2 Interscience, New York, 1962. N.W. Wyckoff, Crystal Structures, Vol 2 Interscience, New York, 1962.
31.
go back to reference C.M. Fang, G.A. de Wijs, H.T. Hintzen, and G. de With, Phonon Spectrum and Thermal Properties of Cubic Si3N4 from First-Principles Calculations, J. Appl. Phys., 2003, 93(9), p 5175–5180.CrossRef C.M. Fang, G.A. de Wijs, H.T. Hintzen, and G. de With, Phonon Spectrum and Thermal Properties of Cubic Si3N4 from First-Principles Calculations, J. Appl. Phys., 2003, 93(9), p 5175–5180.CrossRef
32.
go back to reference R.P. Vedula, N.L. Anderson, and A. Strachan, Effect of Topological Disorder on Structural, Mechanical, and Electronic Properties of Amorphous Silicon Nitride: an Atomistic Study, Phys. Rev. B, 2012, 85(20), p 205209.CrossRef R.P. Vedula, N.L. Anderson, and A. Strachan, Effect of Topological Disorder on Structural, Mechanical, and Electronic Properties of Amorphous Silicon Nitride: an Atomistic Study, Phys. Rev. B, 2012, 85(20), p 205209.CrossRef
33.
go back to reference E. Soignard and P.E. McMillan, Raman Spectroscopy of γ-Si3N4 and γ-Ge3N4 Nitride Spinel Phases Formed at High Pressure and High Temperature: Evidence for Defect Formation in Nitride Spinels, Chem. Mater., 2004, 16, p 3533–3542.CrossRef E. Soignard and P.E. McMillan, Raman Spectroscopy of γ-Si3N4 and γ-Ge3N4 Nitride Spinel Phases Formed at High Pressure and High Temperature: Evidence for Defect Formation in Nitride Spinels, Chem. Mater., 2004, 16, p 3533–3542.CrossRef
35.
go back to reference A. Omeltchenko, A. Nakano, R.K. Kalia, and P. Vashishta, Structure, Mechanical Properties, and Thermal Transport in Microporous Silicon Nitride – Molecular Dynamics Simulations on a Parallel Machine, Europhys. Lett., 1996, 33(9), p 667–672.CrossRef A. Omeltchenko, A. Nakano, R.K. Kalia, and P. Vashishta, Structure, Mechanical Properties, and Thermal Transport in Microporous Silicon Nitride – Molecular Dynamics Simulations on a Parallel Machine, Europhys. Lett., 1996, 33(9), p 667–672.CrossRef
Metadata
Title
Microstructural and Mechanical Properties of Cubic Silicon Nitride: Insights from Molecular Dynamics Simulation
Authors
Vinh V. Le
Thi Hinh Dinh
Thao T. Nguyen
Publication date
23-01-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 21/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-07824-6

Other articles of this Issue 21/2023

Journal of Materials Engineering and Performance 21/2023 Go to the issue

Premium Partners