Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2019

24-05-2019

Microstructural Characteristics and Mechanical Properties in the Laser Beam Welded Joints of High-Strength Microalloyed Steel

Authors: Zheng-Ji Lou, Hong Liu, Guan-Jun Yang, Yuan-Hang Wang, Qin-Fang Yan

Published in: Journal of Materials Engineering and Performance | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The laser beam welded joints of the high-strength microalloyed steel consist of the base metal (BM), the partially transformed heat-affected zone I (PTHAZ-I), the partially transformed heat-affected zone II (PTHAZ-II), the fully transformed heat-affected zone (FTHAZ) and the fusion zone (FZ). The martensite/austenite (M/A) islands of the bainites in the PTHAZ-II are dense versus those in the PTHAZ-I, and the martensites exist in the FTHAZ and the FZ together with the bainites under the slow welding speed. The M/A islands of the bainites and/or the martensites in the PTHAZ become denser under the high welding speed, and the martensites in the FTHAZ and the FZ predominate. The low-angle boundary density and the high local misorientation proportion are used to identify the constituents roughly, consistent with the microstructural characteristics in the welded joints. The misorientation angle distributions are employed to evaluate the degree of the phase transformation, reflecting the change law of the degree of the phase transformation in the welded joints. The hardness and the tensile tests indicate that the HAZ and the FZ are stronger than the BM, dependent on the microstructures in the welded joints. The strengthening in the HAZ and the FZ is mainly attributed to the products of non-equilibrium phase transformation with the high dislocation density.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Zhao and Z. Jiang, Thermo Mechanical Processing of Advanced High Strength Steels, Prog. Mater. Sci., 2018, 94, p 174–242CrossRef J. Zhao and Z. Jiang, Thermo Mechanical Processing of Advanced High Strength Steels, Prog. Mater. Sci., 2018, 94, p 174–242CrossRef
2.
go back to reference P. Gong, E.J. Palmiere, and W.M. Rainforth, Thermomechanical Processing Route to Achieve Ultrafine Grains in Low Carbon Microalloyed Steels, Acta Mater., 2016, 119, p 43–54CrossRef P. Gong, E.J. Palmiere, and W.M. Rainforth, Thermomechanical Processing Route to Achieve Ultrafine Grains in Low Carbon Microalloyed Steels, Acta Mater., 2016, 119, p 43–54CrossRef
3.
go back to reference X.H. Xue, Y.Y. Shan, L. Zheng, and S.N. Lou, Microstructural Characteristic of Low Carbon Microalloyed Steels Produced by Thermo-Mechanical Controlled Process, Mater. Sci. Eng. A, 2006, 438(15), p 285–287CrossRef X.H. Xue, Y.Y. Shan, L. Zheng, and S.N. Lou, Microstructural Characteristic of Low Carbon Microalloyed Steels Produced by Thermo-Mechanical Controlled Process, Mater. Sci. Eng. A, 2006, 438(15), p 285–287CrossRef
4.
go back to reference J. Fernández, S. Illescas, and J.M. Guilemany, Effect of Microalloying Elements on the Austenitic Grain Growth in a Low Carbon HSLA Steel, Mater. Lett., 2007, 61(11–12), p 2389–2392CrossRef J. Fernández, S. Illescas, and J.M. Guilemany, Effect of Microalloying Elements on the Austenitic Grain Growth in a Low Carbon HSLA Steel, Mater. Lett., 2007, 61(11–12), p 2389–2392CrossRef
5.
go back to reference E.J. Czyryca, R.E. Link, R.J. Wong, and D.A. Aylor, Development and Certification of HSLA-100 Steel for Naval Ship Construction, Nav. Eng. J., 1990, 102(3), p 63–82CrossRef E.J. Czyryca, R.E. Link, R.J. Wong, and D.A. Aylor, Development and Certification of HSLA-100 Steel for Naval Ship Construction, Nav. Eng. J., 1990, 102(3), p 63–82CrossRef
6.
go back to reference J. Hu, L.X. Du, J.J. Wang, and Q.Y. Sun, Cooling Process and Mechanical Properties Design of Hot-Rolled Low Carbon High Strength Microalloyed Steel for Automotive Wheel Usage, Mater. Des., 2014, 53(1), p 332–337CrossRef J. Hu, L.X. Du, J.J. Wang, and Q.Y. Sun, Cooling Process and Mechanical Properties Design of Hot-Rolled Low Carbon High Strength Microalloyed Steel for Automotive Wheel Usage, Mater. Des., 2014, 53(1), p 332–337CrossRef
7.
go back to reference R. Datta, S.K. Thakur, A.K. Bhakat, C. Muthuswamy, D. Chakrabarti, and S.S. Mohanty, Thermomechanical Controlled Processing of High Strength Microalloyed Steel for Line Pipe Applications, Iron Steel Technol., 2015, 12(2), p 213–219 R. Datta, S.K. Thakur, A.K. Bhakat, C. Muthuswamy, D. Chakrabarti, and S.S. Mohanty, Thermomechanical Controlled Processing of High Strength Microalloyed Steel for Line Pipe Applications, Iron Steel Technol., 2015, 12(2), p 213–219
8.
go back to reference W.F. Fan, S. Ao, Y.F. Huang, W.D. Liu, Y. Li, Y.Q. Feng, Z. Luo, and B. Wu, Water Cooling Keyhole Gas Tungsten Arc Welding of HSLA Steel, Int. J. Adv. Manuf. Technol., 2017, 92(6), p 1–10 W.F. Fan, S. Ao, Y.F. Huang, W.D. Liu, Y. Li, Y.Q. Feng, Z. Luo, and B. Wu, Water Cooling Keyhole Gas Tungsten Arc Welding of HSLA Steel, Int. J. Adv. Manuf. Technol., 2017, 92(6), p 1–10
9.
go back to reference X. Luo, J. Ren, D. Li, Y. Qin, and P. Xu, Macro Characteristics of Dissimilar High Strength Steel Resistance Spot Welding Joint, Int. J. Adv. Manuf. Technol., 2016, 87, p 1–9CrossRef X. Luo, J. Ren, D. Li, Y. Qin, and P. Xu, Macro Characteristics of Dissimilar High Strength Steel Resistance Spot Welding Joint, Int. J. Adv. Manuf. Technol., 2016, 87, p 1–9CrossRef
10.
go back to reference P.L. Harrison, High Power Laser Welding of Nb Microalloyed Steel Plates, Sci. Technol. Weld. Join., 2013, 10(2), p 211–218CrossRef P.L. Harrison, High Power Laser Welding of Nb Microalloyed Steel Plates, Sci. Technol. Weld. Join., 2013, 10(2), p 211–218CrossRef
11.
go back to reference R. Oyyaravelu, P. Kuppan, and N. Arivazhagan, Metallurgical and Mechanical Properties of Laser Welded High Strength Low Alloy Steel, J. Adv. Res., 2016, 7(3), p 463–472CrossRef R. Oyyaravelu, P. Kuppan, and N. Arivazhagan, Metallurgical and Mechanical Properties of Laser Welded High Strength Low Alloy Steel, J. Adv. Res., 2016, 7(3), p 463–472CrossRef
12.
go back to reference Q. Sun, H.S. Di, J.C. Li, B.Q. Wu, and R.D.K. Misra, A Comparative Study of the Microstructure and Properties of 800 MPa Microalloyed C-Mn Steel Welded Joints by Laser and Gas Metal Arc Welding, Mater. Sci. Eng. A, 2016, 669, p 150–158CrossRef Q. Sun, H.S. Di, J.C. Li, B.Q. Wu, and R.D.K. Misra, A Comparative Study of the Microstructure and Properties of 800 MPa Microalloyed C-Mn Steel Welded Joints by Laser and Gas Metal Arc Welding, Mater. Sci. Eng. A, 2016, 669, p 150–158CrossRef
13.
go back to reference R.S. Coelho, M. Corpas, J.A. Moreto, A. Jahn, J. Standfub, A. Kaysser-Pyzalla, and H. Pinto, Induction-Assisted Laser Beam Welding of a Thermo Mechanically Rolled HSLA S500MC Steel: A Microstructure and Residual Stress Assessment, Mater. Sci. Eng. A, 2013, 578(33), p 125–133CrossRef R.S. Coelho, M. Corpas, J.A. Moreto, A. Jahn, J. Standfub, A. Kaysser-Pyzalla, and H. Pinto, Induction-Assisted Laser Beam Welding of a Thermo Mechanically Rolled HSLA S500MC Steel: A Microstructure and Residual Stress Assessment, Mater. Sci. Eng. A, 2013, 578(33), p 125–133CrossRef
14.
go back to reference X.N. Wang, C.J. Chen, H.S. Wang, S.H. Zhang, M. Zhang, and X. Luo, Microstructure Formation and Precipitation in Laser Welding of Microalloyed C-Mn Steel, J. Mater. Process. Technol., 2015, 226, p 106–114CrossRef X.N. Wang, C.J. Chen, H.S. Wang, S.H. Zhang, M. Zhang, and X. Luo, Microstructure Formation and Precipitation in Laser Welding of Microalloyed C-Mn Steel, J. Mater. Process. Technol., 2015, 226, p 106–114CrossRef
15.
go back to reference Q. Sun, X.K. Nie, Y. Li, and H.S. Di, Microstructure-Property Correlations in Fiber Laser Welded Nb-Ti Microalloyed C-Mn Steel, J. Mater. Eng. Perform., 2018, 27, p 847–856CrossRef Q. Sun, X.K. Nie, Y. Li, and H.S. Di, Microstructure-Property Correlations in Fiber Laser Welded Nb-Ti Microalloyed C-Mn Steel, J. Mater. Eng. Perform., 2018, 27, p 847–856CrossRef
16.
go back to reference H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steels: Microstructure and Properties, Elsevier, Oxford, 2006 H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steels: Microstructure and Properties, Elsevier, Oxford, 2006
17.
go back to reference W.Q. Li, Morphology and Degeneration Mechanism of Pearlite in Control-Cooled Low-Carbon Steel, Iron Steel, 1991, 10, p 30–34 W.Q. Li, Morphology and Degeneration Mechanism of Pearlite in Control-Cooled Low-Carbon Steel, Iron Steel, 1991, 10, p 30–34
18.
go back to reference L.J. Wang, Q.W. Cai, Y.U. Wei, H.B. Wu, and A.D. Lei, Characterization and Formation Mechanism of Microstructures of Low Carbon Low Alloy Steel During Continuous Cooling Transformation, J. Mater. Eng., 2010, 8, p 29–33 L.J. Wang, Q.W. Cai, Y.U. Wei, H.B. Wu, and A.D. Lei, Characterization and Formation Mechanism of Microstructures of Low Carbon Low Alloy Steel During Continuous Cooling Transformation, J. Mater. Eng., 2010, 8, p 29–33
19.
go back to reference T. Maitland, Electron Backscattered Diffraction, Adv. Mater. Process., 2004, 162(5), p 34–36 T. Maitland, Electron Backscattered Diffraction, Adv. Mater. Process., 2004, 162(5), p 34–36
20.
go back to reference V. Randle, Applications of Electron Backscatter Diffraction to Materials Science: Status in 2009, J. Mater. Sci., 2009, 44(16), p 4211–4218CrossRef V. Randle, Applications of Electron Backscatter Diffraction to Materials Science: Status in 2009, J. Mater. Sci., 2009, 44(16), p 4211–4218CrossRef
21.
go back to reference S.I. Wright, M.M. Nowell, and D.P. Field, A Review of Strain Analysis Using Electron Backscatter Diffraction, Microsc. Microanal., 2011, 17, p 316–329CrossRef S.I. Wright, M.M. Nowell, and D.P. Field, A Review of Strain Analysis Using Electron Backscatter Diffraction, Microsc. Microanal., 2011, 17, p 316–329CrossRef
22.
go back to reference A.F. Gourgues, H.M. Flower, and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Technol., 2000, 16(1), p 26–40CrossRef A.F. Gourgues, H.M. Flower, and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Technol., 2000, 16(1), p 26–40CrossRef
23.
go back to reference H. Liu, J. Shui, T. Cai, Q. Chen, X.G. Song, and G.J. Yang, Microstructural Evolution and Hardness Response in the Laser Beam Welded Joints of Pure Titanium During Recrystallization and Grain Growth, Mater. Charact., 2018, 145, p 87–95CrossRef H. Liu, J. Shui, T. Cai, Q. Chen, X.G. Song, and G.J. Yang, Microstructural Evolution and Hardness Response in the Laser Beam Welded Joints of Pure Titanium During Recrystallization and Grain Growth, Mater. Charact., 2018, 145, p 87–95CrossRef
24.
go back to reference L. Mujica, S. Weber, H. Pinto, C. Thomy, and F. Vollertsen, Microstructure and Mechanical Properties of Laser-Welded Joints of TWIP and TRIP Steels, Mater. Sci. Eng. A, 2010, 527, p 2071–2078CrossRef L. Mujica, S. Weber, H. Pinto, C. Thomy, and F. Vollertsen, Microstructure and Mechanical Properties of Laser-Welded Joints of TWIP and TRIP Steels, Mater. Sci. Eng. A, 2010, 527, p 2071–2078CrossRef
25.
go back to reference L. Ryde, Application of EBSD to Analysis of Microstructures in Commercial Steels, Mater. Sci. Technol., 2006, 22(11), p 1297–1306CrossRef L. Ryde, Application of EBSD to Analysis of Microstructures in Commercial Steels, Mater. Sci. Technol., 2006, 22(11), p 1297–1306CrossRef
26.
go back to reference J.H. Wu, P.J. Wray, C.I. Garcia, M. Hua, and A.J. Deardo, Image Quality Analysis: A New Method of Characterizing Microstructures, ISIJ Int., 2005, 45(2), p 254–262CrossRef J.H. Wu, P.J. Wray, C.I. Garcia, M. Hua, and A.J. Deardo, Image Quality Analysis: A New Method of Characterizing Microstructures, ISIJ Int., 2005, 45(2), p 254–262CrossRef
27.
go back to reference G. Kurdjumow and G. Sachs, Uber den mechanismus der stalhartung, Z. Phys. A: Hadrons Nucl., 1930, 64(5–6), p 325–343CrossRef G. Kurdjumow and G. Sachs, Uber den mechanismus der stalhartung, Z. Phys. A: Hadrons Nucl., 1930, 64(5–6), p 325–343CrossRef
28.
go back to reference Z. Nishiyama, X-Ray Investigation of the Mechanism of the Transformation from Face-Centred Cubic Lattice to Body-Centred Cubic, Sci. Rep. Tohoku Univ., 1934, 23, p 637–664 Z. Nishiyama, X-Ray Investigation of the Mechanism of the Transformation from Face-Centred Cubic Lattice to Body-Centred Cubic, Sci. Rep. Tohoku Univ., 1934, 23, p 637–664
29.
go back to reference Z. Nishiyama, Martensite Transformation, Maruzen, Tokyo, 1971 Z. Nishiyama, Martensite Transformation, Maruzen, Tokyo, 1971
30.
go back to reference H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54(5), p 1279–1288CrossRef H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54(5), p 1279–1288CrossRef
31.
go back to reference G. Miyamoto, N. Takayama, and T. Furuhara, Accurate Measurement of the Orientation Relationship of Lath Martensite and Bainite by Electron Backscatter Diffraction Analysis, Scripta Mater., 2009, 60(12), p 1113–1116CrossRef G. Miyamoto, N. Takayama, and T. Furuhara, Accurate Measurement of the Orientation Relationship of Lath Martensite and Bainite by Electron Backscatter Diffraction Analysis, Scripta Mater., 2009, 60(12), p 1113–1116CrossRef
32.
go back to reference M. Humbert, P. Blaineau, L. Germain, and N. Gey, Refinement of Orientation Relations Occurring in Phase Transformation Based on Considering Only the Orientations of the Variants, Scripta Mater., 2011, 64(2), p 114–117CrossRef M. Humbert, P. Blaineau, L. Germain, and N. Gey, Refinement of Orientation Relations Occurring in Phase Transformation Based on Considering Only the Orientations of the Variants, Scripta Mater., 2011, 64(2), p 114–117CrossRef
33.
go back to reference C. Cayron, B. Artaud, and L. Briottet, Reconstruction of Parent Grains from Electron Backscattered Diffraction Data, Mater. Charact., 2006, 57(4), p 386–401CrossRef C. Cayron, B. Artaud, and L. Briottet, Reconstruction of Parent Grains from Electron Backscattered Diffraction Data, Mater. Charact., 2006, 57(4), p 386–401CrossRef
34.
go back to reference P. Blaineau, L. Germain, M. Humbert, and N. Gey, A New Approach to Calculate the γ Orientation Maps in Steels, Solid State Phenom., 2010, 160, p 203–210CrossRef P. Blaineau, L. Germain, M. Humbert, and N. Gey, A New Approach to Calculate the γ Orientation Maps in Steels, Solid State Phenom., 2010, 160, p 203–210CrossRef
35.
go back to reference L. Germain, N. Gey, R. Mercier, P. Blaineau, and M. Humbert, An Advanced Approach to Reconstructing Parent Orientation Maps in the Case of Approximate Orientation Relations: Application to Steels, Acta Mater., 2012, 60(11), p 4551–4562CrossRef L. Germain, N. Gey, R. Mercier, P. Blaineau, and M. Humbert, An Advanced Approach to Reconstructing Parent Orientation Maps in the Case of Approximate Orientation Relations: Application to Steels, Acta Mater., 2012, 60(11), p 4551–4562CrossRef
36.
go back to reference H. Liu, K. Nakata, J.X. Zhang, and J. Liao, Microstructural Evolution of Fusion Zone in Laser Beam Welds of Pure Titanium, Mater. Charact., 2012, 65(3), p 1–7CrossRef H. Liu, K. Nakata, J.X. Zhang, and J. Liao, Microstructural Evolution of Fusion Zone in Laser Beam Welds of Pure Titanium, Mater. Charact., 2012, 65(3), p 1–7CrossRef
37.
go back to reference H. Liu, K. Nakata, N. Yamamoto, and J. Liao, Microstructural Characteristics and Mechanical Properties in Laser Beam Welds of Ti6Al4V Alloy, J. Mater. Sci., 2012, 47(3), p 1460–1470CrossRef H. Liu, K. Nakata, N. Yamamoto, and J. Liao, Microstructural Characteristics and Mechanical Properties in Laser Beam Welds of Ti6Al4V Alloy, J. Mater. Sci., 2012, 47(3), p 1460–1470CrossRef
Metadata
Title
Microstructural Characteristics and Mechanical Properties in the Laser Beam Welded Joints of High-Strength Microalloyed Steel
Authors
Zheng-Ji Lou
Hong Liu
Guan-Jun Yang
Yuan-Hang Wang
Qin-Fang Yan
Publication date
24-05-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04113-z

Other articles of this Issue 6/2019

Journal of Materials Engineering and Performance 6/2019 Go to the issue

Premium Partners