Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Microstructural Evolution and Grain Refinement in Gas Tungsten Constricted Arc (GTCA) Welds of Inconel 718 Alloy—Mechanism and Segregation Analysis

Authors: T. Sonar, V. Balasubramanian, S. Malarvizhi, T. Venkateswaran, D. Sivakumar

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

The magnetic arc constriction and current pulsing techniques were employed to control segregation of Nb and laves phase precipitation in the fusion zone of conventional gas tungsten arc (GTA) welded Inconel 718 alloy joints. In this paper, an emphasis was laid to understand the mechanism responsible for grain refinement in fusion zone microstructure and corresponding influence on laves phase evolution in interdendritic regions. The joints welded at an optimum level of heat input showed finer dendritic structure leading to the evolution of finer discrete laves phase in fusion zone. However, the arc constriction and current pulsing techniques were not effective at higher heat input levels. The welded joints were free from microfissuring in the heat affected zone (HAZ) though welded at high heat input, thus proving its advantages over the other variants of GTA welding process.
Literature
1.
go back to reference J. Gordine, “Some problems in welding Inconel 718,” in Proceedings of the AWS Spring Meeting (San Francisco, 1971), pp. 480s–484s. J. Gordine, “Some problems in welding Inconel 718,” in Proceedings of the AWS Spring Meeting (San Francisco, 1971), pp. 480s–484s.
2.
go back to reference K. Sivaprasad and S. G. S. Raman, “Influence of weld cooling rate, on microstructure and mechanical properties of alloy 718 weldments,” Metall. Mater. Trans. A 39, 2115–2127 (2008). CrossRef K. Sivaprasad and S. G. S. Raman, “Influence of weld cooling rate, on microstructure and mechanical properties of alloy 718 weldments,” Metall. Mater. Trans. A 39, 2115–2127 (2008). CrossRef
3.
go back to reference M. C. Chaturvedi and Y. Han, “Strengthening mechanisms in Inconel 718 superalloy,” Met. Sci. 17, 145–149 (1983). CrossRef M. C. Chaturvedi and Y. Han, “Strengthening mechanisms in Inconel 718 superalloy,” Met. Sci. 17, 145–149 (1983). CrossRef
4.
go back to reference M. Prager and C. S. Shira, Welding of Precipitation-Hardening Nickel-Base Alloys (Welding Research Council, New York, NY, 1968). M. Prager and C. S. Shira, Welding of Precipitation-Hardening Nickel-Base Alloys (Welding Research Council, New York, NY, 1968).
5.
go back to reference J. N. Dupont, J. C. Lippold, and S. D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys (Wiley, Hoboken, NJ, 2009). CrossRef J. N. Dupont, J. C. Lippold, and S. D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys (Wiley, Hoboken, NJ, 2009). CrossRef
6.
go back to reference C. H. Radhakrishna and K. Prasad Rao, “The formation and control of Laves phase in superalloy 718 welds,” J. Mater. Sci. 32, 1977–1984 (1997). CrossRef C. H. Radhakrishna and K. Prasad Rao, “The formation and control of Laves phase in superalloy 718 welds,” J. Mater. Sci. 32, 1977–1984 (1997). CrossRef
7.
go back to reference G. D. J. Ram, A. V. Reddy, K. P. Rao, G. M. Reddy, and S. G. S. Raman, “Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds,” J. Mater. Proc. Technol. 167, 73–82 (2005). CrossRef G. D. J. Ram, A. V. Reddy, K. P. Rao, G. M. Reddy, and S. G. S. Raman, “Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds,” J. Mater. Proc. Technol. 167, 73–82 (2005). CrossRef
8.
go back to reference S. G. K. Manikandan, D. Sivakumar, M. Kamaraj, and K. P. Rao, “Laves phase control in Inconel 718 weldments,” Mater. Sci. Forum 710, 614–619 (2012). CrossRef S. G. K. Manikandan, D. Sivakumar, M. Kamaraj, and K. P. Rao, “Laves phase control in Inconel 718 weldments,” Mater. Sci. Forum 710, 614–619 (2012). CrossRef
9.
go back to reference J. K. Hong, J. H. Park, N. K. Park, I. S. Eom, M. B. Kim, and C. Y. Kang, “Microstructures and mechanical properties of Inconel 718 welds by CO 2 laser welding,” J. Mater. Proc. Technol. 201, 515–520 (2008). CrossRef J. K. Hong, J. H. Park, N. K. Park, I. S. Eom, M. B. Kim, and C. Y. Kang, “Microstructures and mechanical properties of Inconel 718 welds by CO 2 laser welding,” J. Mater. Proc. Technol. 201, 515–520 (2008). CrossRef
10.
go back to reference G. M. Reddy, C. V. S. Murthy, N. Viswanathan, and K. P. Rao, “Effects of electron beam oscillation techniques on solidification behavior and stress rupture properties of Inconel 718 welds,” Sci. Technol. Weld. Joining 12, 106–114 (2007). CrossRef G. M. Reddy, C. V. S. Murthy, N. Viswanathan, and K. P. Rao, “Effects of electron beam oscillation techniques on solidification behavior and stress rupture properties of Inconel 718 welds,” Sci. Technol. Weld. Joining 12, 106–114 (2007). CrossRef
11.
go back to reference G. D. J. Ram, A. Venugopal Reddy, K. Prasad Rao, and G. M. Reddy, “Control of Laves phase in Inconel 718 GTA welds with current pulsing,” Sci. Technol. Weld. Join. 9, 390–398 (2004). CrossRef G. D. J. Ram, A. Venugopal Reddy, K. Prasad Rao, and G. M. Reddy, “Control of Laves phase in Inconel 718 GTA welds with current pulsing,” Sci. Technol. Weld. Join. 9, 390–398 (2004). CrossRef
12.
go back to reference K. Sivaprasad, S. G. S. Raman, P. Mastanaiah, and G. M. Reddy, “Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments,” Mater. Sci. Eng., A 428, 327–331 (2006). CrossRef K. Sivaprasad, S. G. S. Raman, P. Mastanaiah, and G. M. Reddy, “Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments,” Mater. Sci. Eng., A 428, 327–331 (2006). CrossRef
13.
go back to reference R. K. Leary, E. Merson, K. Birmingham, D. Harvey, and R. Brydson, “Microstructural and microtextural analysis of InterPulse GTCAW welds in Cp-Ti and Ti–6Al–4V,” Mater. Sci. Eng., A 527, 7694–7705 (2010). CrossRef R. K. Leary, E. Merson, K. Birmingham, D. Harvey, and R. Brydson, “Microstructural and microtextural analysis of InterPulse GTCAW welds in Cp-Ti and Ti–6Al–4V,” Mater. Sci. Eng., A 527, 7694–7705 (2010). CrossRef
14.
go back to reference S. G. Rao, K. Saravanan, G. Harikrishnan, V. M. J. Sharma, P. Ramesh, K. Sreekumar, and P. Sinha, “Local deformation behavior of Inconel 718 TIG weldments at room temperature and 550°C,” Mater. Sci. Forum 710, 439–444 (2012). CrossRef S. G. Rao, K. Saravanan, G. Harikrishnan, V. M. J. Sharma, P. Ramesh, K. Sreekumar, and P. Sinha, “Local deformation behavior of Inconel 718 TIG weldments at room temperature and 550°C,” Mater. Sci. Forum 710, 439–444 (2012). CrossRef
15.
go back to reference R. Cortés, E.,R. Barragán, V.,H. López, R.,R. Ambriz, and D. Jaramillo, “Mechanical properties of Inconel 718 welds performed by gas tungsten arc welding,” Int. J. Adv. Manuf. Technol. 94, 3949–3961 (2017). CrossRef R. Cortés, E.,R. Barragán, V.,H. López, R.,R. Ambriz, and D. Jaramillo, “Mechanical properties of Inconel 718 welds performed by gas tungsten arc welding,” Int. J. Adv. Manuf. Technol. 94, 3949–3961 (2017). CrossRef
16.
go back to reference N. Anbarasan, S. Jerome, and S. G. K. Manikandan, “Hydrogen and molybdenum control on laves phase formation and tensile properties of Inconel 718 GTA welds,” Mater. Sci. Eng., A 773, 1–20 (2020). CrossRef N. Anbarasan, S. Jerome, and S. G. K. Manikandan, “Hydrogen and molybdenum control on laves phase formation and tensile properties of Inconel 718 GTA welds,” Mater. Sci. Eng., A 773, 1–20 (2020). CrossRef
17.
go back to reference G. D. J. Ram, A. V. Reddy, K. P. Rao, G. M. Reddy, and S. G. S. Raman, “Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds,” J. Mater. Proc. Technol. 167, 73–82 (2005). CrossRef G. D. J. Ram, A. V. Reddy, K. P. Rao, G. M. Reddy, and S. G. S. Raman, “Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds,” J. Mater. Proc. Technol. 167, 73–82 (2005). CrossRef
18.
go back to reference A. Odabasi, N. Unlu, G. Goller, and M. Eruslu, “A study on laser beam welding (LBW) technique: effect of heat input on the microstructural evolution of superalloy Inconel 718,” Metall. Mater. Trans. A 41, 2357–2365 (2010). CrossRef A. Odabasi, N. Unlu, G. Goller, and M. Eruslu, “A study on laser beam welding (LBW) technique: effect of heat input on the microstructural evolution of superalloy Inconel 718,” Metall. Mater. Trans. A 41, 2357–2365 (2010). CrossRef
19.
go back to reference J. K. Hong, J. H. Park, N. K. Park, I. S. Eom, M. B. Kim, and C. Y. Kang, “Microstructures and mechanical properties of Inconel 718 welds by CO 2 laser welding,” J. Mater. Proc. Technol. 201, 515–520 (2008). CrossRef J. K. Hong, J. H. Park, N. K. Park, I. S. Eom, M. B. Kim, and C. Y. Kang, “Microstructures and mechanical properties of Inconel 718 welds by CO 2 laser welding,” J. Mater. Proc. Technol. 201, 515–520 (2008). CrossRef
20.
go back to reference S. I. Kwon, S. H. Bae, J. H. Do, C. Y. Jo, and H. U. Hong, “Characterization of the microstructures and the cryogenic mechanical properties of electron beam welded Inconel 718,” Metall. Mater. Trans. A 47, 777–787 (2015). CrossRef S. I. Kwon, S. H. Bae, J. H. Do, C. Y. Jo, and H. U. Hong, “Characterization of the microstructures and the cryogenic mechanical properties of electron beam welded Inconel 718,” Metall. Mater. Trans. A 47, 777–787 (2015). CrossRef
21.
go back to reference Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo, and H. Li, “Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718,” Mater. Des. 89, 964–977 (2016). CrossRef Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo, and H. Li, “Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718,” Mater. Des. 89, 964–977 (2016). CrossRef
22.
go back to reference G. M. Reddy, C. V. Srinivasa Murthy, K. Srinivasa Rao, and K. P. Rao, “Improvement of mechanical properties of Inconel 718 electron beam welds—influence of welding techniques and post weld heat treatment,” Int. J. Adv. Manuf. Technol. 43, 671–680 (2008). CrossRef G. M. Reddy, C. V. Srinivasa Murthy, K. Srinivasa Rao, and K. P. Rao, “Improvement of mechanical properties of Inconel 718 electron beam welds—influence of welding techniques and post weld heat treatment,” Int. J. Adv. Manuf. Technol. 43, 671–680 (2008). CrossRef
23.
go back to reference V. Balasubramanian and S. Malarvizhi, InterPulse TIG Welding of Aerospace Alloys: Final Technical Report (Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram, 2020). V. Balasubramanian and S. Malarvizhi, InterPulse TIG Welding of Aerospace Alloys: Final Technical Report (Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram, 2020).
24.
go back to reference K. R. Vishwakarma, N. L. Richards, and M. C. Chaturvedi, “Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC ® 718PLUS™ superalloy. Mater. Sci. Eng., A 480, 517–528 (2008). CrossRef K. R. Vishwakarma, N. L. Richards, and M. C. Chaturvedi, “Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC ® 718PLUS™ superalloy. Mater. Sci. Eng., A 480, 517–528 (2008). CrossRef
25.
go back to reference R. Mehrabian, B. H. Kear, and M. Cohen, Rapid Solidification Processing: Principles and Technologies (Claitor’s Publication Division, Baton Rouge, LA, 1978), Part 1, p. 398. R. Mehrabian, B. H. Kear, and M. Cohen, Rapid Solidification Processing: Principles and Technologies (Claitor’s Publication Division, Baton Rouge, LA, 1978), Part 1, p. 398.
26.
go back to reference M. Agilan, S. C. Krishna, S. K. Manwatkar, E. G. Vinayan, D. Sivakumar, and B. Pant, “Effect of welding processes (GTAW & EBW) and solutionizing temperature on microfissuring tendency in inconel 718 welds,” Mater. Sci. Forum 710, 603–607 (2012). CrossRef M. Agilan, S. C. Krishna, S. K. Manwatkar, E. G. Vinayan, D. Sivakumar, and B. Pant, “Effect of welding processes (GTAW & EBW) and solutionizing temperature on microfissuring tendency in inconel 718 welds,” Mater. Sci. Forum 710, 603–607 (2012). CrossRef
27.
go back to reference B. G. Muralidharan, V. Shankar, and T. P. S. Gill, Weldability of Inconel 718—A Review (Indira Gandhi Centre for Atomic Research, Kalpakkam, 1996), pp. 1–62. B. G. Muralidharan, V. Shankar, and T. P. S. Gill, Weldability of Inconel 718—A Review (Indira Gandhi Centre for Atomic Research, Kalpakkam, 1996), pp. 1–62.
28.
go back to reference G. D. J. Ram, A. V. Reddy, K. P. Rao, and G. M. Reddy, “Improvement in stress rupture properties of Inconel 718 gas tungsten arc welds using current pulsing,” J. Mater. Sci. 40 (6), 1497–1500 (2005). CrossRef G. D. J. Ram, A. V. Reddy, K. P. Rao, and G. M. Reddy, “Improvement in stress rupture properties of Inconel 718 gas tungsten arc welds using current pulsing,” J. Mater. Sci. 40 (6), 1497–1500 (2005). CrossRef
29.
go back to reference T. M. Pollock and S. Tin, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties,” J. Propul. Power 222, 361–374 (2006). CrossRef T. M. Pollock and S. Tin, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties,” J. Propul. Power 222, 361–374 (2006). CrossRef
30.
go back to reference Heat management, InterPulse and plasma systems. http://​www.​vbcie.​com.​ Accessed August 15, 2017. Heat management, InterPulse and plasma systems. http://​www.​vbcie.​com.​ Accessed August 15, 2017.
Metadata
Title
Microstructural Evolution and Grain Refinement in Gas Tungsten Constricted Arc (GTCA) Welds of Inconel 718 Alloy—Mechanism and Segregation Analysis
Authors
T. Sonar
V. Balasubramanian
S. Malarvizhi
T. Venkateswaran
D. Sivakumar
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21130093