Skip to main content
Top
Published in:

07-11-2022 | Technical Article

Microstructure and Mechanical Properties of Selective Laser Melting 316L/R-316L Butt Joint Welded by Laser Welding

Authors: Xiaopeng Lin, Tang Bin, Xiaoyan Gu, Hongchao Sheng, Hongwei Sun, Wenbin Gao, Chenfu Fang, Zhidong Yang

Published in: Journal of Materials Engineering and Performance | Issue 14/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Utilization of welding technology connecting small precise parts formed by Selective Laser Melting (SLM) and unsophisticated traditional formed parts into significant structural components provides a new way to manufacture large-scale complex 3D-printing parts. It is expected to improve the yield efficiency, save cost, and has a broad development prospect. Existing research results show that SLM forming parts differ quite from traditional casting and forging parts in structure and performance. Whether SLMed parts and rolled ones can be connected by welding and the influence mechanism of the anisotropy on weld performance are unclear. The results show that the joints exhibit good laser weldability without apparent defects. The microstructures of the SLMed base plates and laser-welded joints consist of the cellular dendrite in the austenite matrix within the columnar grains. The tensile strength of the joints is similar to that of rolled ones but lower than that of SLMed base metal; the elongation is about 1.3 times that of the SLMed base metal and 66% of the rolled ones. The corrosion properties of SLM base metal and weld area are superior to rolled plates. The anisotropy of SLM has a noticeable influence on the microstructure and tensile properties of the weld but plays a minor role in determining the element distribution, microhardness, and corrosion resistance. This work provides the theoretical and technical foundation for the innovative manufacture of large-scale, high-quality, and complex-formed metallic parts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.I. Nurhudan, S. Supriadi, Y. Whulanza, and A.S. Saragih, Additive Manufacturing of Metallic Based on Extrusion Process: A Review, J. Manuf. Process., 2021, 66, p 228–237.CrossRef A.I. Nurhudan, S. Supriadi, Y. Whulanza, and A.S. Saragih, Additive Manufacturing of Metallic Based on Extrusion Process: A Review, J. Manuf. Process., 2021, 66, p 228–237.CrossRef
2.
go back to reference W.N. Zhang, L.Z. Wang, Z.X. Feng, and Y.M. Chen, Research Progress on Selective Laser Melting (SLM) of Magnesium Alloys: A Review, Optik, 2020, 207, p 163842.CrossRef W.N. Zhang, L.Z. Wang, Z.X. Feng, and Y.M. Chen, Research Progress on Selective Laser Melting (SLM) of Magnesium Alloys: A Review, Optik, 2020, 207, p 163842.CrossRef
3.
go back to reference F. Rasoanarivo, D. Dumur, and P. Rodriguez-Ayerbe, Improving SLM Additive Manufacturing Operation Precision with H-Infinity Controller Structure, CIRP. J. Manuf. Sci. Tecnol., 2021, 33, p 82–90.CrossRef F. Rasoanarivo, D. Dumur, and P. Rodriguez-Ayerbe, Improving SLM Additive Manufacturing Operation Precision with H-Infinity Controller Structure, CIRP. J. Manuf. Sci. Tecnol., 2021, 33, p 82–90.CrossRef
4.
go back to reference X. Yan, C. Chen, C. Chang, D. Dong, R. Zhao, R. Jenkins, J. Wang, Z. Ren, M. Liu, H. Liao, R. Lupoi, and S. Yin, Study of the Microstructure and Mechanical Performance of C-X Stainless Steel Processed by Selective Laser Melting (SLM), Mat. Sci. Eng. A., 2020, 781, p 139227.CrossRef X. Yan, C. Chen, C. Chang, D. Dong, R. Zhao, R. Jenkins, J. Wang, Z. Ren, M. Liu, H. Liao, R. Lupoi, and S. Yin, Study of the Microstructure and Mechanical Performance of C-X Stainless Steel Processed by Selective Laser Melting (SLM), Mat. Sci. Eng. A., 2020, 781, p 139227.CrossRef
5.
go back to reference S. Periane, A. Duchosal, S. Vaudreuil, H. Chibane, A. Morandeau, M.A. Xavior, and R. Leroy, Influence of Heat Treatment on the Fatigue Resistance of Inconel 718 Fabricated by Selective Laser Melting (SLM), Mater. Today Proc., 2021, 46, p 7860–7865.CrossRef S. Periane, A. Duchosal, S. Vaudreuil, H. Chibane, A. Morandeau, M.A. Xavior, and R. Leroy, Influence of Heat Treatment on the Fatigue Resistance of Inconel 718 Fabricated by Selective Laser Melting (SLM), Mater. Today Proc., 2021, 46, p 7860–7865.CrossRef
6.
go back to reference A.B. Kale, P. Alluri, A.K. Singh, and S.H. Choi, The Deformation and Fracture Behavior of 316L SS Fabricated by SLM under Mini V-Bending Test, Int. J. Mech. Sci., 2021, 196, p 106292.CrossRef A.B. Kale, P. Alluri, A.K. Singh, and S.H. Choi, The Deformation and Fracture Behavior of 316L SS Fabricated by SLM under Mini V-Bending Test, Int. J. Mech. Sci., 2021, 196, p 106292.CrossRef
7.
go back to reference P. Liu, J.Y. Hu, H.X. Li, S.Y. Sun, and Y.B. Zhang, Effect of Heat Treatment on Microstructure, Hardness and Corrosion Resistance of 7075 Al Alloys Fabricated by SLM, J. Manuf. Process., 2020, 60, p 578–585.CrossRef P. Liu, J.Y. Hu, H.X. Li, S.Y. Sun, and Y.B. Zhang, Effect of Heat Treatment on Microstructure, Hardness and Corrosion Resistance of 7075 Al Alloys Fabricated by SLM, J. Manuf. Process., 2020, 60, p 578–585.CrossRef
8.
go back to reference K.G. Prashanth, R. Damodaram, S. Scudino et al., Friction Welding of Al-12Si Parts Produced by Selective Laser Melting, Mater. Des., 2014, 57, p 632–637.CrossRef K.G. Prashanth, R. Damodaram, S. Scudino et al., Friction Welding of Al-12Si Parts Produced by Selective Laser Melting, Mater. Des., 2014, 57, p 632–637.CrossRef
9.
go back to reference K.G. Prashanth, R. Damodaram, T. Maity et al., Friction Welding of Selective Laser Melted Ti6Al4V Parts, Mat. Sci. Eng. A, 2017, 704, p 66–71.CrossRef K.G. Prashanth, R. Damodaram, T. Maity et al., Friction Welding of Selective Laser Melted Ti6Al4V Parts, Mat. Sci. Eng. A, 2017, 704, p 66–71.CrossRef
10.
go back to reference Z.Y. Zhang, S.L. Wang, Y.H. Chen, Y.D. Huang, B.H. Li, and Y.Q. Qiu, Microstructure and Properties of 3D-GH3625 Electron Beam Welded, IOP Conf. Ser. Mat. Sci. Eng. A, 2018, 423, p 12074.CrossRef Z.Y. Zhang, S.L. Wang, Y.H. Chen, Y.D. Huang, B.H. Li, and Y.Q. Qiu, Microstructure and Properties of 3D-GH3625 Electron Beam Welded, IOP Conf. Ser. Mat. Sci. Eng. A, 2018, 423, p 12074.CrossRef
11.
go back to reference Y. Zhang, X.A. Hu, and Y. Jiang, Study on the Microstructure and Fatigue Behavior of a Laser-Welded Ni-Based Alloy Manufactured by Selective Laser Melting Method, J. Mater. Eng. Perform., 2020, 29, p 2957-e68.CrossRef Y. Zhang, X.A. Hu, and Y. Jiang, Study on the Microstructure and Fatigue Behavior of a Laser-Welded Ni-Based Alloy Manufactured by Selective Laser Melting Method, J. Mater. Eng. Perform., 2020, 29, p 2957-e68.CrossRef
12.
go back to reference X.A. Hu, Z.Y. Xue, G.L. Zhao, J. Yun, D.Q. Shi, and X.G. Yang, Laserwelding of a Selective Laser Melted Ni-Base Superalloy: Microstructure and High Temperature Mechanical Property, Mat. Sci. Eng. A, 2019, 745, p 335-e45.CrossRef X.A. Hu, Z.Y. Xue, G.L. Zhao, J. Yun, D.Q. Shi, and X.G. Yang, Laserwelding of a Selective Laser Melted Ni-Base Superalloy: Microstructure and High Temperature Mechanical Property, Mat. Sci. Eng. A, 2019, 745, p 335-e45.CrossRef
13.
go back to reference Z. Du, H.C. Chen, M.J. Tan, G. Bi, and C.K. Chua, Investigation of Porosity Reduction, Microstructure and Mechanical Properties for Joining of Selective Laser Melting Fabricated Aluminium Composite via Friction Stir Welding, J. Manuf. Process., 2018, 36, p 33–43.CrossRef Z. Du, H.C. Chen, M.J. Tan, G. Bi, and C.K. Chua, Investigation of Porosity Reduction, Microstructure and Mechanical Properties for Joining of Selective Laser Melting Fabricated Aluminium Composite via Friction Stir Welding, J. Manuf. Process., 2018, 36, p 33–43.CrossRef
14.
go back to reference J. Mäkikangas, T. Rautio, A. Hamada, M. Jaskari, and A. Järvenpää, Laser Welding of Selective Laser Melted Ti6Al4V: Microstructure and Mechanical Properties, Mater. Today Proc., 2020, 28, p 907–911.CrossRef J. Mäkikangas, T. Rautio, A. Hamada, M. Jaskari, and A. Järvenpää, Laser Welding of Selective Laser Melted Ti6Al4V: Microstructure and Mechanical Properties, Mater. Today Proc., 2020, 28, p 907–911.CrossRef
15.
go back to reference J. Yang, Y. Wang, F. Li, W. Huang, G. Jing, Z. Wang, and X. Zeng, Weldability, Microstructure and Mechanical Properties of Laser-Welded Selective Laser Melted 304 Stainless Steel Joints, J. Mater. Sci. Technol., 2019, 35, p 1817–1824.CrossRef J. Yang, Y. Wang, F. Li, W. Huang, G. Jing, Z. Wang, and X. Zeng, Weldability, Microstructure and Mechanical Properties of Laser-Welded Selective Laser Melted 304 Stainless Steel Joints, J. Mater. Sci. Technol., 2019, 35, p 1817–1824.CrossRef
16.
go back to reference C. Galy, E. Le Guen, E. Lacoste, and C. Arvieu, Main Defects Observed in Aluminum Alloy Parts Produced by SLM: From Causes to Consequences, Addit. Manuf., 2018, 22, p 165–175. C. Galy, E. Le Guen, E. Lacoste, and C. Arvieu, Main Defects Observed in Aluminum Alloy Parts Produced by SLM: From Causes to Consequences, Addit. Manuf., 2018, 22, p 165–175.
17.
go back to reference B.K. Nagesha, S.A. Kumar, K. Vinodh, A. Pathania, and S. Barad, A Thermo-Mechanical Modelling Approach on the Residual Stress Prediction of SLM Processed HPNGV Aeroengine Part, Mater. Today. Proc., 2021, 44, p 4990–4996.CrossRef B.K. Nagesha, S.A. Kumar, K. Vinodh, A. Pathania, and S. Barad, A Thermo-Mechanical Modelling Approach on the Residual Stress Prediction of SLM Processed HPNGV Aeroengine Part, Mater. Today. Proc., 2021, 44, p 4990–4996.CrossRef
18.
go back to reference G. Moeini, S.V. Sajadifar, T. Wegener, C. Rössler, A. Gerber, S. Böhm, and T. Niendorf, On the Influence of Build Orientation on Properties of Friction Stir Welded Al-Si10Mg Parts Produced by Selective Laser Melting, J. Mater. Sci. Technol., 2021, 12, p 1446–1460. G. Moeini, S.V. Sajadifar, T. Wegener, C. Rössler, A. Gerber, S. Böhm, and T. Niendorf, On the Influence of Build Orientation on Properties of Friction Stir Welded Al-Si10Mg Parts Produced by Selective Laser Melting, J. Mater. Sci. Technol., 2021, 12, p 1446–1460.
19.
go back to reference X. Hu, Z. Xue, G. Zhao, J. Yun, D. Shi, and X. Yang, Laser Welding of a Selective Laser Melted Ni-Base Superalloy: Microstructure and High Temperature Mechanical Property, Mat. Sci. Eng. A, 2019, 745, p 335–345.CrossRef X. Hu, Z. Xue, G. Zhao, J. Yun, D. Shi, and X. Yang, Laser Welding of a Selective Laser Melted Ni-Base Superalloy: Microstructure and High Temperature Mechanical Property, Mat. Sci. Eng. A, 2019, 745, p 335–345.CrossRef
20.
go back to reference R. Kopf, J. Gottwald, A. Jacob, M. Brandt, and G. Lanza, Cost-Oriented Planning of Equipment for Selective Laser Melting (SLM) in Production Lines, CIRP Ann., 2018, 67, p 471–474.CrossRef R. Kopf, J. Gottwald, A. Jacob, M. Brandt, and G. Lanza, Cost-Oriented Planning of Equipment for Selective Laser Melting (SLM) in Production Lines, CIRP Ann., 2018, 67, p 471–474.CrossRef
21.
go back to reference S.H. Tang, C.W. Cheng, R.Y. Yeh, and R.Q. Hsu, Direct Joining of 3D-Printed Thermoplastic Parts to SLM-Fabricated Metal Cellular Structures by Ultrasonic Welding, Int. J. Adv. Manuf. Technol., 2018, 99, p 729–736.CrossRef S.H. Tang, C.W. Cheng, R.Y. Yeh, and R.Q. Hsu, Direct Joining of 3D-Printed Thermoplastic Parts to SLM-Fabricated Metal Cellular Structures by Ultrasonic Welding, Int. J. Adv. Manuf. Technol., 2018, 99, p 729–736.CrossRef
22.
go back to reference M. Akbari and R. Kovacevic, Joining of Elements Fabricated by a Robotized Laser/Wire Directed Energy Deposition Process by Using an Autogenous Laser Welding, Int. J. Adv. Manuf. Technol., 2018, 100, p 2971–2980.CrossRef M. Akbari and R. Kovacevic, Joining of Elements Fabricated by a Robotized Laser/Wire Directed Energy Deposition Process by Using an Autogenous Laser Welding, Int. J. Adv. Manuf. Technol., 2018, 100, p 2971–2980.CrossRef
23.
go back to reference R. Sun, W. Li, Y. C. Zhang, P. Wang, B. Ji, T. Sakai, Microstructure related failure mechanism of selective laser melted GH4169 with interior fatigue cracking, Mater. Lett., 2022, 308, p 131284.CrossRef R. Sun, W. Li, Y. C. Zhang, P. Wang, B. Ji, T. Sakai, Microstructure related failure mechanism of selective laser melted GH4169 with interior fatigue cracking, Mater. Lett., 2022, 308, p 131284.CrossRef
Metadata
Title
Microstructure and Mechanical Properties of Selective Laser Melting 316L/R-316L Butt Joint Welded by Laser Welding
Authors
Xiaopeng Lin
Tang Bin
Xiaoyan Gu
Hongchao Sheng
Hongwei Sun
Wenbin Gao
Chenfu Fang
Zhidong Yang
Publication date
07-11-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 14/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07567-w

Other articles of this Issue 14/2023

Journal of Materials Engineering and Performance 14/2023 Go to the issue

Premium Partners