Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2022

02-03-2022 | Technical Article

Microstructure-Based MultiStage Fatigue Modeling of NiTi Alloy Fabricated via Direct Energy Deposition (DED)

Authors: Allen Bagheri, Aref Yadollahi, Mohammad J. Mahtabi, Yubraj Paudel, Ethan Vance, Nima Shamsaei, Mark F. Horstemeyer

Published in: Journal of Materials Engineering and Performance | Issue 6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A microstructure-based multistage fatigue (MSF) model was employed to study the process–structure–property relations for cyclic damage and fatigue life of NiTi alloy fabricated via an additive manufacturing (AM) technique. Various defect characteristics (i.e., level of porosity, pore size, and their spacing) and microstructural features (i.e., grain size, mean grain orientation, and misorientation angles), dictated by the manufacturing and post-manufacturing heat treatment processes, were used to predict the fatigue life of AM and wrought NiTi specimens. The specimens fabricated via AM underwent two different heat treatment conditions (i.e., aging followed by air cooling and annealing followed by water quenching). Using the process-dependent parameters, the MSF model could capture the differences in fatigue behavior of each condition. The predicted lower and upper bounds of fatigue life based on the range observed for microstructural features and defect characteristics were able to account for the scatter observed in experimental fatigue data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.I. Stephens, A. Fatemi, R.R. Stephens and H.O. Fuchs, Metal Fatigue in Engineering, 2nd ed. Wiley, Hoboken, 2000. R.I. Stephens, A. Fatemi, R.R. Stephens and H.O. Fuchs, Metal Fatigue in Engineering, 2nd ed. Wiley, Hoboken, 2000.
2.
go back to reference A. Yadollahi, M.J. Mahtabi, A. Khalili, H.R. Doude, and J.C. Newman, Fatigue Life Prediction of Additively Manufactured Material: Effects of Surface Roughness, Defect Size, and Shape, Fatigue Fract. Eng. Mater. Struct., 2018. A. Yadollahi, M.J. Mahtabi, A. Khalili, H.R. Doude, and J.C. Newman, Fatigue Life Prediction of Additively Manufactured Material: Effects of Surface Roughness, Defect Size, and Shape, Fatigue Fract. Eng. Mater. Struct., 2018.
3.
go back to reference A. Yadollahi, M. Mahmoudi, A. Elwany, H. Doude, L. Bian and J.C. Newman, Fatigue-Life Prediction of Additively Manufactured Material: Effects of Heat Treatment and Build Orientation, Fatigue Fract. Eng. Mater. Struct., 2020, 43(4), p 831–844. CrossRef A. Yadollahi, M. Mahmoudi, A. Elwany, H. Doude, L. Bian and J.C. Newman, Fatigue-Life Prediction of Additively Manufactured Material: Effects of Heat Treatment and Build Orientation, Fatigue Fract. Eng. Mater. Struct., 2020, 43(4), p 831–844. CrossRef
4.
go back to reference D.L. McDowell, K. Gall, M.F. Horstemeyer and J. Fan, Microstructure-Based Fatigue Modeling of Cast A356–T6 Alloy, Eng. Fract. Mech., 2003, 70(1), p 49–80. CrossRef D.L. McDowell, K. Gall, M.F. Horstemeyer and J. Fan, Microstructure-Based Fatigue Modeling of Cast A356–T6 Alloy, Eng. Fract. Mech., 2003, 70(1), p 49–80. CrossRef
5.
go back to reference S.H. Seifi, A. Yadollahi, W. Tian, H. Doude, V.H. Hammond and L. Bian, In Situ Nondestructive Fatigue‐Life Prediction of Additive Manufactured Parts by Establishing a Process–Defect–Property Relationship, Advanced Intelligent Systems, 2021, 2000268. S.H. Seifi, A. Yadollahi, W. Tian, H. Doude, V.H. Hammond and L. Bian, In Situ Nondestructive Fatigue‐Life Prediction of Additive Manufactured Parts by Establishing a Process–Defect–Property Relationship, Advanced Intelligent Systems, 2021, 2000268.
6.
go back to reference T. Duerig, A. Pelton, and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, Elsevier, 1999, 273, p 149–160. T. Duerig, A. Pelton, and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, Elsevier, 1999, 273, p 149–160.
7.
go back to reference A.R. Pelton, J. Dicello, and S. Miyazaki, Optimisation of Processing and Properties of Medical Grade Nitinol Wire, Minim. Invasive Ther. Allied Technol., Taylor & Francis, 2000, 9(2), p 107–118. A.R. Pelton, J. Dicello, and S. Miyazaki, Optimisation of Processing and Properties of Medical Grade Nitinol Wire, Minim. Invasive Ther. Allied Technol., Taylor & Francis, 2000, 9(2), p 107–118.
8.
go back to reference K. Gall, H. Sehitoglu, Y.I. Chumlyakov, Y.L. Zuev, and I. Karaman, The Role of Coherent Precipitates in Martensitic Transformations in Single Crystal and Polycrystalline Ti-50.8 At% Ni, Scr. Mater., Pergamon, 1998, 39(6), p 699–705. K. Gall, H. Sehitoglu, Y.I. Chumlyakov, Y.L. Zuev, and I. Karaman, The Role of Coherent Precipitates in Martensitic Transformations in Single Crystal and Polycrystalline Ti-50.8 At% Ni, Scr. Mater., Pergamon, 1998, 39(6), p 699–705.
9.
go back to reference S. Saedi, A.S. Turabi, M.T. Andani, C. Haberland, M. Elahinia, and H. Karaca, Thermomechanical Characterization of Ni-Rich NiTi Fabricated by Selective Laser Melting, Smart Mater. Struct., IOP Publishing, 2016, 25(3), p 035005. S. Saedi, A.S. Turabi, M.T. Andani, C. Haberland, M. Elahinia, and H. Karaca, Thermomechanical Characterization of Ni-Rich NiTi Fabricated by Selective Laser Melting, Smart Mater. Struct., IOP Publishing, 2016, 25(3), p 035005.
10.
go back to reference M. Nishida, C.M. Wayman, and T. Honma, Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys, Metall. Trans. A, Springer, 1986, 17(9), p 1505–1515. M. Nishida, C.M. Wayman, and T. Honma, Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys, Metall. Trans. A, Springer, 1986, 17(9), p 1505–1515.
11.
go back to reference H.E. Karaca, S.M. Saghaian, G. Ded, H. Tobe, B. Basaran, H.J. Maier, R.D. Noebe, and Y.I. Chumlyakov, Effects of Nanoprecipitation on the Shape Memory and Material Properties of an Ni-Rich NiTiHf High Temperature Shape Memory Alloy, Acta Mater., Elsevier, 2013, 61(19), p 7422–7431. H.E. Karaca, S.M. Saghaian, G. Ded, H. Tobe, B. Basaran, H.J. Maier, R.D. Noebe, and Y.I. Chumlyakov, Effects of Nanoprecipitation on the Shape Memory and Material Properties of an Ni-Rich NiTiHf High Temperature Shape Memory Alloy, Acta Mater., Elsevier, 2013, 61(19), p 7422–7431.
12.
go back to reference D.M. Keicher and J.E. Smugeresky, The Laser Forming of Metallic Components Using Particulate Materials, 1982, p 51–54. D.M. Keicher and J.E. Smugeresky, The Laser Forming of Metallic Components Using Particulate Materials, 1982, p 51–54.
13.
go back to reference C. Atwood, M. Griffith, L. Harwell, E. Schlienger, M. Ensz, J. Smugeresky, T. Romero, D. Greene, and D. Reckaway, Laser Engineered Net Shaping (LENSTM): A Tool for Direct Fabrication of Metal Parts, International Congress on Applications of Lasers and Electro-Optics, Laser Institute of America, 1998, p E1–E7. C. Atwood, M. Griffith, L. Harwell, E. Schlienger, M. Ensz, J. Smugeresky, T. Romero, D. Greene, and D. Reckaway, Laser Engineered Net Shaping (LENSTM): A Tool for Direct Fabrication of Metal Parts, International Congress on Applications of Lasers and Electro-Optics, Laser Institute of America, 1998, p E1–E7.
14.
go back to reference A. Bagheri, N. Shamsaei, and S.M. Thompson, Microstructure and Mechanical Properties of Ti-6Al-4V Parts Fabricated by Laser Engineered Net Shaping, ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2015, p V02AT02A005 A. Bagheri, N. Shamsaei, and S.M. Thompson, Microstructure and Mechanical Properties of Ti-6Al-4V Parts Fabricated by Laser Engineered Net Shaping, ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2015, p V02AT02A005
15.
go back to reference A. Yadollahi and N. Shamsaei, Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities, Int. J. Fatigue, 2017, 98. A. Yadollahi and N. Shamsaei, Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities, Int. J. Fatigue, 2017, 98.
16.
go back to reference N. Shamsaei, A. Yadollahi, L. Bian and S.M. Thompson, An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control, Addit. Manuf., 2015, 8, p 12–35. N. Shamsaei, A. Yadollahi, L. Bian and S.M. Thompson, An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control, Addit. Manuf., 2015, 8, p 12–35.
17.
go back to reference J.T. Sehrt and G. Witt, Dynamic Strength and Fracture Toughness Analysis of Beam Melted Parts, Proceedings of the 36th International MATADOR Conference. (Springer, London, 2010), p. 385–388. J.T. Sehrt and G. Witt, Dynamic Strength and Fracture Toughness Analysis of Beam Melted Parts, Proceedings of the 36th International MATADOR Conference. (Springer, London, 2010), p. 385–388.
18.
go back to reference H.A. Stoffregen, K. Butterweck, and Eberhard Abele, Fatigue Analysis in Selective Laser Melting: Review and Investigation of Thin-Walled Actuator Housings, Solid Freeform Fabrication Symposium, 2013, p 635–650. H.A. Stoffregen, K. Butterweck, and Eberhard Abele, Fatigue Analysis in Selective Laser Melting: Review and Investigation of Thin-Walled Actuator Housings, Solid Freeform Fabrication Symposium, 2013, p 635–650.
19.
go back to reference A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, and L. Bian, Effects of Building Orientation and Heat Treatment on Fatigue Behavior of Selective Laser Melted 17-4 PH Stainless Steel, Int. J. Fatigue, 2017, 94. A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, and L. Bian, Effects of Building Orientation and Heat Treatment on Fatigue Behavior of Selective Laser Melted 17-4 PH Stainless Steel, Int. J. Fatigue, 2017, 94.
20.
go back to reference J. Lee and Y.C. Shin, Effects of Composition and Post Heat Treatment on Shape Memory Characteristics and Mechanical Properties for Laser Direct Deposited Nitinol, Lasers Manuf. Mater. Process., Springer, 2019, 6(1), p 41–58. J. Lee and Y.C. Shin, Effects of Composition and Post Heat Treatment on Shape Memory Characteristics and Mechanical Properties for Laser Direct Deposited Nitinol, Lasers Manuf. Mater. Process., Springer, 2019, 6(1), p 41–58.
21.
go back to reference M.J. Mahtabi, N. Shamsaei and M. Mitchell, Fatigue of Nitinol: The State-of-the-Art and Ongoing Challenges, J. Mech. Behav. Biomed. Mater., 2015, 50, p 228–254. CrossRef M.J. Mahtabi, N. Shamsaei and M. Mitchell, Fatigue of Nitinol: The State-of-the-Art and Ongoing Challenges, J. Mech. Behav. Biomed. Mater., 2015, 50, p 228–254. CrossRef
22.
go back to reference S.W. Robertson, A.R. Pelton, and R.O. Ritchie, Mechanical Fatigue and Fracture of Nitinol, Int. Mater. Rev., Taylor & Francis, 2012, 57(1), p 1–37. S.W. Robertson, A.R. Pelton, and R.O. Ritchie, Mechanical Fatigue and Fracture of Nitinol, Int. Mater. Rev., Taylor & Francis, 2012, 57(1), p 1–37.
23.
go back to reference ASTM Standard, B 214-16—Standard Test Method for Sieve Analysis of Metal Powders, 2016. ASTM Standard, B 214-16—Standard Test Method for Sieve Analysis of Metal Powders, 2016.
24.
go back to reference A. Bagheri, M.J. Mahtabi and N. Shamsaei, Fatigue Behavior and Cyclic Deformation of Additive Manufactured NiTi, J. Mech. Behav. Biomed. Mater., 2018, 1(252), p 440–453. A. Bagheri, M.J. Mahtabi and N. Shamsaei, Fatigue Behavior and Cyclic Deformation of Additive Manufactured NiTi, J. Mech. Behav. Biomed. Mater., 2018, 1(252), p 440–453.
25.
go back to reference ASTM Standard, E 606-12—Standard Practice for Strain-Controlled Fatigue Testing, 2012. ASTM Standard, E 606-12—Standard Practice for Strain-Controlled Fatigue Testing, 2012.
26.
go back to reference A.L. McKelvey and R.O. Ritchie, Fatigue-Crack Propagation in Nitinol, a Shape-Memory and Superelastic Endovascular Stent Material, J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., Wiley Online Library, 1999, 47(3), p 301–308. A.L. McKelvey and R.O. Ritchie, Fatigue-Crack Propagation in Nitinol, a Shape-Memory and Superelastic Endovascular Stent Material, J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., Wiley Online Library, 1999, 47(3), p 301–308.
27.
go back to reference K.E. Wilkes and P.K. Liaw, The Fatigue Behavior of Shape-Memory Alloys, Jom, Springer, 2000, 52(10), p 45–51 K.E. Wilkes and P.K. Liaw, The Fatigue Behavior of Shape-Memory Alloys, Jom, Springer, 2000, 52(10), p 45–51
28.
go back to reference P. Zhou, J. Zhou, Z. Ye, X. Hong, H. Huang, and W. Xu, Effect of Grain Size and Misorientation Angle on Fatigue Crack Growth of Nanocrystalline Materials, Mater. Sci. Eng. A, Elsevier, 2016, 663, p 1–7. P. Zhou, J. Zhou, Z. Ye, X. Hong, H. Huang, and W. Xu, Effect of Grain Size and Misorientation Angle on Fatigue Crack Growth of Nanocrystalline Materials, Mater. Sci. Eng. A, Elsevier, 2016, 663, p 1–7.
29.
go back to reference C. Blochwitz, R. Richter, W. Tirschler, and K. Obrtlik, The Effect of Local Textures on Microcrack Propagation in Fatigued Fcc Metals, Mater. Sci. Eng. A, Elsevier, 1997, 234, p 563–566. C. Blochwitz, R. Richter, W. Tirschler, and K. Obrtlik, The Effect of Local Textures on Microcrack Propagation in Fatigued Fcc Metals, Mater. Sci. Eng. A, Elsevier, 1997, 234, p 563–566.
30.
go back to reference A.S. Azar, L.-E. Svensson, and B. Nyhus, Effect of Crystal Orientation and Texture on Fatigue Crack Evolution in High Strength Steel Welds, Int. J. Fatigue, Elsevier, 2015, 77, p 95–104. A.S. Azar, L.-E. Svensson, and B. Nyhus, Effect of Crystal Orientation and Texture on Fatigue Crack Evolution in High Strength Steel Welds, Int. J. Fatigue, Elsevier, 2015, 77, p 95–104.
31.
go back to reference K. Gall, J. Tyber, G. Wilkesanders, S.W. Robertson, R.O. Ritchie, and H.J. Maier, Effect of Microstructure on the Fatigue of Hot-Rolled and Cold-Drawn NiTi Shape Memory Alloys, Mater. Sci. Eng. A, Elsevier, 2008, 486(1–2), p 389–403. K. Gall, J. Tyber, G. Wilkesanders, S.W. Robertson, R.O. Ritchie, and H.J. Maier, Effect of Microstructure on the Fatigue of Hot-Rolled and Cold-Drawn NiTi Shape Memory Alloys, Mater. Sci. Eng. A, Elsevier, 2008, 486(1–2), p 389–403.
32.
go back to reference M.J. Mahtabi, N. Shamsaei, and B. Rutherford, Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Alloys: An Experimental Investigation, Procedia Eng., Elsevier, 2015, 133, p 646–654. M.J. Mahtabi, N. Shamsaei, and B. Rutherford, Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Alloys: An Experimental Investigation, Procedia Eng., Elsevier, 2015, 133, p 646–654.
33.
go back to reference K. Gall and H.J. Maier, Cyclic Deformation Mechanisms in Precipitated NiTi Shape Memory Alloys, Acta Mater., Elsevier, 2002, 50(18), p 4643–4657. K. Gall and H.J. Maier, Cyclic Deformation Mechanisms in Precipitated NiTi Shape Memory Alloys, Acta Mater., Elsevier, 2002, 50(18), p 4643–4657.
34.
go back to reference S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall. Trans. A, Springer, 1986, 17(1), p 115–120. S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall. Trans. A, Springer, 1986, 17(1), p 115–120.
35.
go back to reference H. El Kadiri, L. Wang, M.F. Horstemeyer, R.S. Yassar, J.T. Berry, S. Felicelli and P.T. Wang, Phase Transformations in Low-Alloy Steel Laser Deposits, Mater. Sci. Eng. A, 2008, 494(1–2), p 10–20. CrossRef H. El Kadiri, L. Wang, M.F. Horstemeyer, R.S. Yassar, J.T. Berry, S. Felicelli and P.T. Wang, Phase Transformations in Low-Alloy Steel Laser Deposits, Mater. Sci. Eng. A, 2008, 494(1–2), p 10–20. CrossRef
36.
go back to reference D. Catoor, Z. Ma, and S. Kumar, Cyclic Response and Fatigue Failure of Nitinol Under Tension–Tension Loading, J. Mater. Res., Cambridge University Press, 2019, 34(20), p 3504–3522. D. Catoor, Z. Ma, and S. Kumar, Cyclic Response and Fatigue Failure of Nitinol Under Tension–Tension Loading, J. Mater. Res., Cambridge University Press, 2019, 34(20), p 3504–3522.
37.
go back to reference M.J. Mahtabi and N. Shamsaei, Fatigue Modeling for Superelastic NiTi Considering Cyclic Deformation and Load Ratio Effects, Shape Mem. Superelasticity, Springer, 2017, 3(3), p 250–263 M.J. Mahtabi and N. Shamsaei, Fatigue Modeling for Superelastic NiTi Considering Cyclic Deformation and Load Ratio Effects, Shape Mem. Superelasticity, Springer, 2017, 3(3), p 250–263
38.
go back to reference M.J. Mahtabi and N. Shamsaei, A Modified Energy-Based Approach for Fatigue Life Prediction of Superelastic NiTi in Presence of Tensile Mean Strain and Stress, Int. J. Mech. Sci., Elsevier, 2016, 117, p 321–333. M.J. Mahtabi and N. Shamsaei, A Modified Energy-Based Approach for Fatigue Life Prediction of Superelastic NiTi in Presence of Tensile Mean Strain and Stress, Int. J. Mech. Sci., Elsevier, 2016, 117, p 321–333.
39.
go back to reference R.M. Tabanli, N.K. Simha, and B.T. Berg, Mean Strain Effects on the Fatigue Properties of Superelastic NiTi, Metall. Mater. Trans. A, Springer, 2001, 32(7), p 1866–1869. R.M. Tabanli, N.K. Simha, and B.T. Berg, Mean Strain Effects on the Fatigue Properties of Superelastic NiTi, Metall. Mater. Trans. A, Springer, 2001, 32(7), p 1866–1869.
40.
go back to reference Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale and J.B. Jordon, Microstructure-Based Multistage Fatigue Modeling of Aluminum Alloy 7075–T651, Eng. Fract. Mech., 2007, 74(17), p 2810–2823. CrossRef Y. Xue, D.L. McDowell, M.F. Horstemeyer, M.H. Dale and J.B. Jordon, Microstructure-Based Multistage Fatigue Modeling of Aluminum Alloy 7075–T651, Eng. Fract. Mech., 2007, 74(17), p 2810–2823. CrossRef
41.
go back to reference J.B. Jordon, M.F. Horstemeyer, N. Yang, J.F. Major, K.A. Gall, J. Fan, and D.L. McDowell, Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy, Metall. Mater. Trans. A, Springer, 2010, 41(2), p 356–363. J.B. Jordon, M.F. Horstemeyer, N. Yang, J.F. Major, K.A. Gall, J. Fan, and D.L. McDowell, Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy, Metall. Mater. Trans. A, Springer, 2010, 41(2), p 356–363.
42.
go back to reference K. Gall, M. Horstemeyer, D.L. McDowell and J. Fan, Finite Element Analysis of the Stress Distributions near Damaged Si Particle Clusters in Cast Al–Si Alloys, Mech. Mater., 2000, 32(5), p 277–301. CrossRef K. Gall, M. Horstemeyer, D.L. McDowell and J. Fan, Finite Element Analysis of the Stress Distributions near Damaged Si Particle Clusters in Cast Al–Si Alloys, Mech. Mater., 2000, 32(5), p 277–301. CrossRef
43.
go back to reference D.W. Brown, A. Jain, S.R. Agnew and B. Clausen, Twinning and Detwinning During Cyclic Deformation of Mg Alloy AZ31B, Mater. Sci. Forum, 2007, 539–543, p 3407–3413. CrossRef D.W. Brown, A. Jain, S.R. Agnew and B. Clausen, Twinning and Detwinning During Cyclic Deformation of Mg Alloy AZ31B, Mater. Sci. Forum, 2007, 539–543, p 3407–3413. CrossRef
44.
go back to reference D.R. Hayhurst, F.A. Leckie, and D.L. McDowell, Damage Growth under Nonproportional Loading, Multiaxial fatigue, ASTM International, 1985. D.R. Hayhurst, F.A. Leckie, and D.L. McDowell, Damage Growth under Nonproportional Loading, Multiaxial fatigue, ASTM International, 1985.
45.
go back to reference L.H. Rettberg, J.B. Jordon, M.F. Horstemeyer and J.W. Jones, Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60, Metall. Mater. Trans. A, 2012, 43(7), p 2260–2274. CrossRef L.H. Rettberg, J.B. Jordon, M.F. Horstemeyer and J.W. Jones, Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60, Metall. Mater. Trans. A, 2012, 43(7), p 2260–2274. CrossRef
46.
go back to reference A.R. Pelton, V. Schroeder, M.R. Mitchell, X.-Y. Gong, M. Barney, and S.W. Robertson, Fatigue and Durability of Nitinol Stents, J. Mech. Behav. Biomed. Mater., Elsevier, 2008, 1(2), p 153–164. A.R. Pelton, V. Schroeder, M.R. Mitchell, X.-Y. Gong, M. Barney, and S.W. Robertson, Fatigue and Durability of Nitinol Stents, J. Mech. Behav. Biomed. Mater., Elsevier, 2008, 1(2), p 153–164.
47.
go back to reference A. Runciman, D. Xu, A.R. Pelton, and R.O. Ritchie, An Equivalent Strain/Coffin–Manson Approach to Multiaxial Fatigue and Life Prediction in Superelastic Nitinol Medical Devices, Biomaterials, Elsevier, 2011, 32(22), p 4987–4993. A. Runciman, D. Xu, A.R. Pelton, and R.O. Ritchie, An Equivalent Strain/Coffin–Manson Approach to Multiaxial Fatigue and Life Prediction in Superelastic Nitinol Medical Devices, Biomaterials, Elsevier, 2011, 32(22), p 4987–4993.
48.
go back to reference J.M. Hughes, M.F. Horstemeyer, R. Carino, N. Sukhija, W.B. Lawrimore, S. Kim, and M.I. Baskes, Hierarchical Bridging between Ab Initio and Atomistic Level Computations: Sensitivity and Uncertainty Analysis for the Modified Embedded-Atom Method (Meam) Potential (Part b), Jom, Springer, 2015, 67(1), p 148–153. J.M. Hughes, M.F. Horstemeyer, R. Carino, N. Sukhija, W.B. Lawrimore, S. Kim, and M.I. Baskes, Hierarchical Bridging between Ab Initio and Atomistic Level Computations: Sensitivity and Uncertainty Analysis for the Modified Embedded-Atom Method (Meam) Potential (Part b), Jom, Springer, 2015, 67(1), p 148–153.
Metadata
Title
Microstructure-Based MultiStage Fatigue Modeling of NiTi Alloy Fabricated via Direct Energy Deposition (DED)
Authors
Allen Bagheri
Aref Yadollahi
Mohammad J. Mahtabi
Yubraj Paudel
Ethan Vance
Nima Shamsaei
Mark F. Horstemeyer
Publication date
02-03-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06603-z

Other articles of this Issue 6/2022

Journal of Materials Engineering and Performance 6/2022 Go to the issue

Premium Partners