Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2019

28-05-2019

Microstructure Characteristics and Comparative Analysis of Constitutive Models for Flow Stress Prediction of Inconel 718 Alloy

Authors: Gauri Mahalle, Nitin Kotkunde, Amit Kumar Gupta, R. Sujith, Swadesh Kumar Singh, Y. C. Lin

Published in: Journal of Materials Engineering and Performance | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An accurate constitutive model is essential for analyzing deformation behavior of material and reliable numerical simulations in metal forming processes. In this study, hot tensile tests of Inconel 718 alloy have been conducted over a wide range of temperatures (300-973 K at an interval of 100 K), strains (0.01-0.3 at an interval of 0.01) and quasi-static strain rates (0.0001, 0.001, 0.01 s−1). Flow stress behavior is significantly affected by test temperatures and strain rates. Microstructure characteristics of deformed test specimens have been examined using scanning electron microscope and electron backscatter diffraction (EBSD). The fractography study revealed that fracture is mix-mode type, i.e., ductile and brittle. Subsequently, EBSD analysis shown that dynamic recrystallization mechanism is more pronounced at a higher temperature. Furthermore, four constitutive models, namely modified Cowper–Symonds, modified Johnson Cook, modified Zerillie-Armstrong and integrated Johnson Cook–Zerillie-Armstrong (JC-ZA) models have been investigated for flow stress prediction. Capability of models has been evaluated based on the correlation coefficient (R), average absolute error (Δ) and its standard deviation (δ). Accurate prediction of flow stress behavior is found by integrated JC-ZA model with R = 0.9873, Δ = 2.44 and δ = 4.08%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Special Metals, ‘INCONEL Alloy 718’, 2007, doi:SMC-066 Special Metals, ‘INCONEL Alloy 718’, 2007, doi:SMC-066
2.
go back to reference R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, New York, 2006)CrossRef R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, New York, 2006)CrossRef
3.
go back to reference R.E. Schafrik, D.D. Ward, and J.R. Groh, Application of Alloy 718 in GE Aircraft Engines: Past, Present and Next Five Years, International symposium; 5th, Superalloys; Superalloys 718, 625, 706 Var. Deriv. Minerals, Metals, and Materials Society, (Warrendale, PA, 2001) R.E. Schafrik, D.D. Ward, and J.R. Groh, Application of Alloy 718 in GE Aircraft Engines: Past, Present and Next Five Years, International symposium; 5th, Superalloys; Superalloys 718, 625, 706 Var. Deriv. Minerals, Metals, and Materials Society, (Warrendale, PA, 2001)
4.
go back to reference Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, and G. Liu, Effects of Initial δ Phase on Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy, Mater. Sci. Eng. A, 2014, 598, p 251–262CrossRef Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, and G. Liu, Effects of Initial δ Phase on Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy, Mater. Sci. Eng. A, 2014, 598, p 251–262CrossRef
5.
go back to reference P. Zhang, C. Hu, C. Gang Ding, Q. Zhu, and H. Yong Qin, Plastic Deformation Behavior and Processing Maps of a Ni-Based Superalloy, Mater. Des., 2015, 65, p 575–584CrossRef P. Zhang, C. Hu, C. Gang Ding, Q. Zhu, and H. Yong Qin, Plastic Deformation Behavior and Processing Maps of a Ni-Based Superalloy, Mater. Des., 2015, 65, p 575–584CrossRef
6.
go back to reference Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759CrossRef
7.
go back to reference M. Alves, Material Constitutive Law for Large Strains and Strain Rates, J. Eng. Mech., 2000, 126, p 215–218CrossRef M. Alves, Material Constitutive Law for Large Strains and Strain Rates, J. Eng. Mech., 2000, 126, p 215–218CrossRef
8.
go back to reference G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48CrossRef G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48CrossRef
9.
go back to reference G. Chen, L. Chen, G. Zhao, C. Zhang, and W. Cui, Microstructure Analysis of an Al-Zn-Mg Alloy during Porthole Die Extrusion Based on Modeling of Constitutive Equation and Dynamic Recrystallization, J. Alloys Compd., 2017, 710, p 80–91CrossRef G. Chen, L. Chen, G. Zhao, C. Zhang, and W. Cui, Microstructure Analysis of an Al-Zn-Mg Alloy during Porthole Die Extrusion Based on Modeling of Constitutive Equation and Dynamic Recrystallization, J. Alloys Compd., 2017, 710, p 80–91CrossRef
10.
go back to reference H. Zhang, W. Wen, and H. Cui, Behaviors of IC10 Alloy over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling, Mater. Sci. Eng. A, 2009, 504, p 99–103CrossRef H. Zhang, W. Wen, and H. Cui, Behaviors of IC10 Alloy over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling, Mater. Sci. Eng. A, 2009, 504, p 99–103CrossRef
11.
go back to reference Y.C. Lin, X.M. Chen, and G. Liu, A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527(26), p 6980–6986CrossRef Y.C. Lin, X.M. Chen, and G. Liu, A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527(26), p 6980–6986CrossRef
12.
go back to reference F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef
13.
go back to reference W.-S. Lee and C.-Y. Liu, The Effects of Temperature and Strain Rate on the Dynamic Flow Behaviour of Different Steels, Mater. Sci. Eng. A, 2006, 426(1–2), p 101–113CrossRef W.-S. Lee and C.-Y. Liu, The Effects of Temperature and Strain Rate on the Dynamic Flow Behaviour of Different Steels, Mater. Sci. Eng. A, 2006, 426(1–2), p 101–113CrossRef
14.
go back to reference D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526(1–2), p 1–6CrossRef D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526(1–2), p 1–6CrossRef
15.
go back to reference L. Chen, G. Zhao, and J. Yu, Hot Deformation Behavior and Constitutive Modeling of Homogenized 6026 Aluminum Alloy, Mater. Des., 2015, 74, p 25–35CrossRef L. Chen, G. Zhao, and J. Yu, Hot Deformation Behavior and Constitutive Modeling of Homogenized 6026 Aluminum Alloy, Mater. Des., 2015, 74, p 25–35CrossRef
16.
go back to reference Y.C. Lin, D.X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 47, p 115–123CrossRef Y.C. Lin, D.X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 47, p 115–123CrossRef
17.
go back to reference Y.C. Lin, K.-K. Li, H.-B. Li, J. Chen, X.-M. Chen, and D.-X. Wen, New Constitutive Model for High-Temperature Deformation Behavior of Inconel 718 Superalloy, Mater. Des., 2015, 74, p 108–118CrossRef Y.C. Lin, K.-K. Li, H.-B. Li, J. Chen, X.-M. Chen, and D.-X. Wen, New Constitutive Model for High-Temperature Deformation Behavior of Inconel 718 Superalloy, Mater. Des., 2015, 74, p 108–118CrossRef
18.
go back to reference B. Li, Y. Du, and Z. Peng, Investigation on the Hot Deformation Characteristics of Ni-Cr-Fe-Ti Alloy, Vacuum, 2018, 157, p 299–305CrossRef B. Li, Y. Du, and Z. Peng, Investigation on the Hot Deformation Characteristics of Ni-Cr-Fe-Ti Alloy, Vacuum, 2018, 157, p 299–305CrossRef
19.
go back to reference A. Iturbe, E. Giraud, E. Hormaetxe, A. Garay, G. Germain, K. Ostolaza, and P.J. Arrazola, Mechanical Characterization and Modelling of Inconel 718 Material Behavior for Machining Process Assessment, Mater. Sci. Eng. A, 2017, 682, p 441–453CrossRef A. Iturbe, E. Giraud, E. Hormaetxe, A. Garay, G. Germain, K. Ostolaza, and P.J. Arrazola, Mechanical Characterization and Modelling of Inconel 718 Material Behavior for Machining Process Assessment, Mater. Sci. Eng. A, 2017, 682, p 441–453CrossRef
20.
go back to reference G.E. Dieter and D. Bacon, Mechanical Metallurgy SI, Metric edn. (McGraw-Hill Book Company, London, 1988) G.E. Dieter and D. Bacon, Mechanical Metallurgy SI, Metric edn. (McGraw-Hill Book Company, London, 1988)
21.
go back to reference P. Rodriguez, Serrated Plastic Flow, Bull. Mater. Sci., 1984, 6(4), p 653–663CrossRef P. Rodriguez, Serrated Plastic Flow, Bull. Mater. Sci., 1984, 6(4), p 653–663CrossRef
22.
go back to reference Y.C. Lin, H. Yang, Y. Xin, and C.Z. Li, Effects of Initial Microstructures on Serrated Flow Features and Fracture Mechanisms of a Nickel-Based Superalloy, Mater. Charact., 2018, 144, p 9–21CrossRef Y.C. Lin, H. Yang, Y. Xin, and C.Z. Li, Effects of Initial Microstructures on Serrated Flow Features and Fracture Mechanisms of a Nickel-Based Superalloy, Mater. Charact., 2018, 144, p 9–21CrossRef
23.
go back to reference D. Kuhlmann-Wilsdorf, Theory of Plastic Deformation: Properties of Low Energy Dislocation Structures. Mater. Sci. Eng. A 113, 1–41 (1989)CrossRef D. Kuhlmann-Wilsdorf, Theory of Plastic Deformation: Properties of Low Energy Dislocation Structures. Mater. Sci. Eng. A 113, 1–41 (1989)CrossRef
24.
go back to reference N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, and K.M. George, Microstructure and Micro-Texture Evolution during Large Strain Deformation of Inconel Alloy IN718, Mater. Charact., 2015, 110, p 241–256CrossRef N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, and K.M. George, Microstructure and Micro-Texture Evolution during Large Strain Deformation of Inconel Alloy IN718, Mater. Charact., 2015, 110, p 241–256CrossRef
25.
go back to reference S.M. Hussaini, S.K. Singh, and A.K. Gupta, Formability of Austenitic Stainless Steel 316 Sheet in Dynamic Strain Aging Regime, Acta Metall. Slovaca, 2014, 20(1), p 71–81CrossRef S.M. Hussaini, S.K. Singh, and A.K. Gupta, Formability of Austenitic Stainless Steel 316 Sheet in Dynamic Strain Aging Regime, Acta Metall. Slovaca, 2014, 20(1), p 71–81CrossRef
26.
go back to reference Y.V.R.K. Prasad, K.P. Rao, and S. Sasidhara, Hot Working Guide—A Compendium of Processing Maps (ASM International, 2015) Y.V.R.K. Prasad, K.P. Rao, and S. Sasidhara, Hot Working Guide—A Compendium of Processing Maps (ASM International, 2015)
27.
go back to reference S.S. Panicker, H.G. Singh, S.K. Panda, and R. Dashwood, Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature, J. Mater. Eng. Perform., 2015, 24(11), p 4267–4282CrossRef S.S. Panicker, H.G. Singh, S.K. Panda, and R. Dashwood, Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature, J. Mater. Eng. Perform., 2015, 24(11), p 4267–4282CrossRef
28.
go back to reference Y. Tian, L. Huang, H. Ma, and J. Li, Establishment and Comparison of Four Constitutive Models of 5A02 Aluminium Alloy in High-Velocity Forming Process, Mater. Des., 2014, 54, p 587–597CrossRef Y. Tian, L. Huang, H. Ma, and J. Li, Establishment and Comparison of Four Constitutive Models of 5A02 Aluminium Alloy in High-Velocity Forming Process, Mater. Des., 2014, 54, p 587–597CrossRef
29.
go back to reference N. Kotkunde, H.N. Krishnamurthy, P. Puranik, A.K. Gupta, and S.K. Singh, Microstructure Study and Constitutive Modeling of Ti-6Al-4V Alloy at Elevated Temperatures, Mater. Des., 2014, 54, p 96–103CrossRef N. Kotkunde, H.N. Krishnamurthy, P. Puranik, A.K. Gupta, and S.K. Singh, Microstructure Study and Constitutive Modeling of Ti-6Al-4V Alloy at Elevated Temperatures, Mater. Des., 2014, 54, p 96–103CrossRef
30.
go back to reference D.G. Tari and M.J. Worswick, Journal of Materials Processing Technology Elevated Temperature Constitutive Behavior and Simulation of Warm Forming of AZ31B, J. Mater. Process. Technol., 2015, 221, p 40–55CrossRef D.G. Tari and M.J. Worswick, Journal of Materials Processing Technology Elevated Temperature Constitutive Behavior and Simulation of Warm Forming of AZ31B, J. Mater. Process. Technol., 2015, 221, p 40–55CrossRef
31.
go back to reference D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47, p 568–576CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47, p 568–576CrossRef
32.
go back to reference J. Che, T. Zhou, Z. Liang, J. Wu, and X. Wang, An Integrated Johnson-Cook and Zerilli-Armstrong Model for Material Flow Behavior of Ti-6Al-4V at High Strain Rate and Elevated Temperature, J. Braz. Soc. Mech. Sci. Eng., 2018, 40(253), p 1–10 J. Che, T. Zhou, Z. Liang, J. Wu, and X. Wang, An Integrated Johnson-Cook and Zerilli-Armstrong Model for Material Flow Behavior of Ti-6Al-4V at High Strain Rate and Elevated Temperature, J. Braz. Soc. Mech. Sci. Eng., 2018, 40(253), p 1–10
33.
go back to reference Y.C. Lin and X.M. Chen, A Combined Johnson-Cook and Zerilli-Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633CrossRef Y.C. Lin and X.M. Chen, A Combined Johnson-Cook and Zerilli-Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633CrossRef
34.
go back to reference L. Chen, G. Zhao, J. Yu, and W. Zhang, Constitutive Analysis of Homogenized 7005 Aluminum Alloy at Evaluated Temperature for Extrusion Process, Mater. Des., 2015, 66, p 129–136CrossRef L. Chen, G. Zhao, J. Yu, and W. Zhang, Constitutive Analysis of Homogenized 7005 Aluminum Alloy at Evaluated Temperature for Extrusion Process, Mater. Des., 2015, 66, p 129–136CrossRef
35.
go back to reference L. Chen, G. Zhao, J. Gong, X. Chen, and M. Chen, Hot Deformation Behaviors and Processing Maps of 2024 Aluminum Alloy in As-Cast and Homogenized States, J. Mater. Eng. Perform., 2015, 24, p 5002–5012CrossRef L. Chen, G. Zhao, J. Gong, X. Chen, and M. Chen, Hot Deformation Behaviors and Processing Maps of 2024 Aluminum Alloy in As-Cast and Homogenized States, J. Mater. Eng. Perform., 2015, 24, p 5002–5012CrossRef
36.
go back to reference A. Mitchell, The Precipitation of Primary Carbides in IN718 and Its Relation to Solidification Conditions, Superalloys 718, 625, 706 Var. Deriv., 2005, 20, p 299–310CrossRef A. Mitchell, The Precipitation of Primary Carbides in IN718 and Its Relation to Solidification Conditions, Superalloys 718, 625, 706 Var. Deriv., 2005, 20, p 299–310CrossRef
Metadata
Title
Microstructure Characteristics and Comparative Analysis of Constitutive Models for Flow Stress Prediction of Inconel 718 Alloy
Authors
Gauri Mahalle
Nitin Kotkunde
Amit Kumar Gupta
R. Sujith
Swadesh Kumar Singh
Y. C. Lin
Publication date
28-05-2019
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2019
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04116-w

Other articles of this Issue 6/2019

Journal of Materials Engineering and Performance 6/2019 Go to the issue

Premium Partners