Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

10-09-2021 | STRENGTH AND PLASTICITY

Microstructure in the Interface Zone of Bimetal 09Mn2Si Steel/Ti Joint Obtained by Explosion Welding

Authors: O. V. Antonova, I. G. Shirinkina, Yu. P. Besshaposhnikov

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

Optical (OM), scanning electron (SEM), and transmission electron microscopy (TEM) were used to investigate microstructure in the interface zone of 09Mn2Si steel/Ti joint obtained by means of explosion welding. It was shown that the bonding interface had a wavy appearance. Moreover, it was observed that grains near the interface were elongated in parallel to the explosion direction. TEM study has demonstrated that the microstructure typical of states after severe plastic deformation (SPD) is observed in the areas where materials in solid are welded. These are mesoscopic-level defects: fragmented deformation microbands with high number density of microscopic-scale defects, dislocations, and a cellular microstructure. The sizes of individual deformation bands generally varied in a range of 200–400 nm, which well enough correlates with the distance between dents at the bonding interface. This gives grounds to presume that the bands can play an important role in the explosion welding processes. Near the bonding zone, finely dispersed precipitates of Ti4Fe2O are found in titanium, as well as iron carbides of Fe3C—in steel area.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference A. A. Deribas, Physics of Strengthening and Welding by Explosion (Nauka, Novosibirsk, 1980) [in Russian]. A. A. Deribas, Physics of Strengthening and Welding by Explosion (Nauka, Novosibirsk, 1980) [in Russian].
2.
go back to reference V. I. Lysak and S. V. Kuzmin, Explosion Welding (Mashinostroenie, Moscow, 2005) [in Russian]. V. I. Lysak and S. V. Kuzmin, Explosion Welding (Mashinostroenie, Moscow, 2005) [in Russian].
3.
go back to reference B. Crossland, Explosive Welding of Metals and its Application (Clarendon Press, Oxford, 1982). B. Crossland, Explosive Welding of Metals and its Application (Clarendon Press, Oxford, 1982).
4.
go back to reference T. Z. Blazynski, Explosive Welding, Forming and Compaction (Applied Science Publishers, London, 1983). CrossRef T. Z. Blazynski, Explosive Welding, Forming and Compaction (Applied Science Publishers, London, 1983). CrossRef
5.
go back to reference T. Yamashita, T. Onzawa, and Y. Ishii, “Microstructures of explosively bonded metals as observed by transmission electron microscopy: low carbon-steel clad and austenitic stainless clad steel,” J. Jpn. Weld. Soc. 42, No. 2, 518–525 (1973). CrossRef T. Yamashita, T. Onzawa, and Y. Ishii, “Microstructures of explosively bonded metals as observed by transmission electron microscopy: low carbon-steel clad and austenitic stainless clad steel,” J. Jpn. Weld. Soc. 42, No. 2, 518–525 (1973). CrossRef
6.
go back to reference M. D. Nagarkor and S. H. Carpenter, “An investigation of atomic diffusion at the interface of explosion welded Cu–Ni couples,” Mater. Sci. Eng. 20, No. 3, 251–260 (1965). CrossRef M. D. Nagarkor and S. H. Carpenter, “An investigation of atomic diffusion at the interface of explosion welded Cu–Ni couples,” Mater. Sci. Eng. 20, No. 3, 251–260 (1965). CrossRef
7.
go back to reference Q. Chu, R. Bai, M. Zhang, J. Li, Zh. Lei, N. Hu, J. M. Bell, and Ch. Yan, “Microstructure and mechanical properties of titanium/steel bimetallic joints,” Mater. Charact. 132, 330–337 (2017). CrossRef Q. Chu, R. Bai, M. Zhang, J. Li, Zh. Lei, N. Hu, J. M. Bell, and Ch. Yan, “Microstructure and mechanical properties of titanium/steel bimetallic joints,” Mater. Charact. 132, 330–337 (2017). CrossRef
8.
go back to reference B. Qin, G. M. Sheng, J. W. Huang, B. Zhou, S. Y. Qiu, and C. Li, “Phase transformation diffusion bonding of titanium alloy with stainless steel,” Mater. Charact. 56, 32–38 (2006). CrossRef B. Qin, G. M. Sheng, J. W. Huang, B. Zhou, S. Y. Qiu, and C. Li, “Phase transformation diffusion bonding of titanium alloy with stainless steel,” Mater. Charact. 56, 32–38 (2006). CrossRef
9.
go back to reference W. Tinga, Zh. Binggang, F. Jicaiab, and T. Qib, “Effect of a copper filler metal on the microstructure and mechanical properties of electron beam welded titanium–stainless steel joint,” Mater. Charact. 73, 104–113 (2012). CrossRef W. Tinga, Zh. Binggang, F. Jicaiab, and T. Qib, “Effect of a copper filler metal on the microstructure and mechanical properties of electron beam welded titanium–stainless steel joint,” Mater. Charact. 73, 104–113 (2012). CrossRef
10.
go back to reference N. Kahraman, B. Gulenc, and F. Findik, “Joining of titanium/stainless steel by explosive welding and effect on interface,” J Mater. Process. Technol. 169, 127–133 (2005). CrossRef N. Kahraman, B. Gulenc, and F. Findik, “Joining of titanium/stainless steel by explosive welding and effect on interface,” J Mater. Process. Technol. 169, 127–133 (2005). CrossRef
11.
go back to reference N. Nishida, A. Chiba, K. Imamura, H. Minamoto, and J. Shudo, “Microstructural modification in an explosively welded Ti/Ti clad material: Bonding interface,” Metall. Trans. A 24, No. 3, 735–742 (1993). CrossRef N. Nishida, A. Chiba, K. Imamura, H. Minamoto, and J. Shudo, “Microstructural modification in an explosively welded Ti/Ti clad material: Bonding interface,” Metall. Trans. A 24, No. 3, 735–742 (1993). CrossRef
12.
go back to reference E. V. Nesterova and V. V. Rybin, :TEM-study of ultra-fine grained microstructures within different zones of Ti–Ti explosive weld,” Titanium’99. Science and technology, Proceedings of the Ninth World conference of Titanium, Russia, (1999), pp. 768–774. E. V. Nesterova and V. V. Rybin, :TEM-study of ultra-fine grained microstructures within different zones of Ti–Ti explosive weld,” Titanium’99. Science and technology, Proceedings of the Ninth World conference of Titanium, Russia, (1999), pp. 768–774.
13.
go back to reference M. I. Goldshtein, C. V. Gratchev, and Ju. G. Wexler, Special Steel (MISIS, Moscow, 1999). M. I. Goldshtein, C. V. Gratchev, and Ju. G. Wexler, Special Steel (MISIS, Moscow, 1999).
14.
go back to reference Yu. P. Besshaposhnikov, “Motion of a plate thrown by a glancing detonation wave,” Combust., Explos. Shock Waves (Engl. Transl.) 35, 109–112 (1999). Yu. P. Besshaposhnikov, “Motion of a plate thrown by a glancing detonation wave,” Combust., Explos. Shock Waves (Engl. Transl.) 35, 109–112 (1999).
15.
go back to reference Welded joints. Method of mechanical properties determination Me. Codex. 2005. Interstate Standard. Welded joints. Method of mechanical properties determination Me. Codex. 2005. Interstate Standard.
16.
go back to reference S. A. A. Akbari Mousavi and P. Farhadi Sartangi, “Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel,” Mater. Des.  30, 459–468 (2009). CrossRef S. A. A. Akbari Mousavi and P. Farhadi Sartangi, “Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel,” Mater. Des.  30, 459–468 (2009). CrossRef
17.
go back to reference V. V. Sagaradze, “Nonmartensitic phase transformations in steels upon heavy cold deformation,” Phys. Met. Metallogr. 90, 18–35 (2000). V. V. Sagaradze, “Nonmartensitic phase transformations in steels upon heavy cold deformation,” Phys. Met. Metallogr. 90, 18–35 (2000).
18.
go back to reference V. M. Schastlivtsev D. A. Mirzaev, I. L. Yakovleva et al., Pearlite in Carbon Steels (Ekaterinburg, Ur. Branch RAS, 2006) [in Russian]. V. M. Schastlivtsev D. A. Mirzaev, I. L. Yakovleva et al., Pearlite in Carbon Steels (Ekaterinburg, Ur. Branch RAS, 2006) [in Russian].
19.
go back to reference Y. T. Zhu, J. Y. Huang, J. Gubicza, and T. Ungár, “Nanostructures in Ti processed by severe plastic deformation,” J. Mater. Res. 18, 1908–1917 (2003). CrossRef Y. T. Zhu, J. Y. Huang, J. Gubicza, and T. Ungár, “Nanostructures in Ti processed by severe plastic deformation,” J. Mater. Res. 18, 1908–1917 (2003). CrossRef
20.
go back to reference E. V. Shorokhov and I. N. Zhgiliev, “Shockwaves in condensed matter,” Proc. Int. Conference (St. Petersburg, 2006), pp. 281–283. E. V. Shorokhov and I. N. Zhgiliev, “Shockwaves in condensed matter,” Proc. Int. Conference (St. Petersburg, 2006), pp. 281–283.
21.
go back to reference V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, I. N. Zhgilev, A. E. Kheifets, I. V. Khomskaya, P. A. Nasonov, and A. A. Ushakov, “Structure of titanium after dynamic channel angular pressing at elevated temperatures,” Phys. Met. Metallogr. 108, 347–352 (2009). CrossRef V. I. Zel’dovich, E. V. Shorokhov, N. Yu. Frolova, I. N. Zhgilev, A. E. Kheifets, I. V. Khomskaya, P. A. Nasonov, and A. A. Ushakov, “Structure of titanium after dynamic channel angular pressing at elevated temperatures,” Phys. Met. Metallogr. 108, 347–352 (2009). CrossRef
22.
go back to reference P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan,  Electron Microscopy of Thin Crystals (Butterworths, London, 1965). P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan,  Electron Microscopy of Thin Crystals (Butterworths, London, 1965).
23.
go back to reference E. K. Molshanova, Atlas of Phase Diagrams of Titanium Alloys (Mashinostroenie, Moscow, 1964) [in Russian]. E. K. Molshanova, Atlas of Phase Diagrams of Titanium Alloys (Mashinostroenie, Moscow, 1964) [in Russian].
24.
25.
go back to reference E. V. Parusov, S. I. Gubenko, G. D. Sukhomlin, and Ya. Kamalova, “Evolution of the defect structure of pearlitic steel in cold deformation,” Steel Transl. 48, 472–477 (2018). CrossRef E. V. Parusov, S. I. Gubenko, G. D. Sukhomlin, and Ya. Kamalova, “Evolution of the defect structure of pearlitic steel in cold deformation,” Steel Transl. 48, 472–477 (2018). CrossRef
26.
go back to reference Y. L. Krasulin, “Dislocations as active centers in topochemical reactions,” Theor. Exp. Chem. 3, 31–35 (1969). CrossRef Y. L. Krasulin, “Dislocations as active centers in topochemical reactions,” Theor. Exp. Chem. 3, 31–35 (1969). CrossRef
27.
go back to reference Yu. L. Krasulin and M. Ch. Shorshov, “On the mechanism of formation of compounds of dissimilar materials in the solid state,” Phys. Chem. Mater. Proc. 1, 89–97 (1967). Yu. L. Krasulin and M. Ch. Shorshov, “On the mechanism of formation of compounds of dissimilar materials in the solid state,” Phys. Chem. Mater. Proc. 1, 89–97 (1967).
28.
go back to reference V. N. Perevezentsev and G. V. Sarafanov, “The screening of mesodefects stress fields by dislocation ensemble and misorientation structure formation during plastic deformation,” Rev. Adv. Mater. Sci. 30, 73−89 (2012). V. N. Perevezentsev and G. V. Sarafanov, “The screening of mesodefects stress fields by dislocation ensemble and misorientation structure formation during plastic deformation,” Rev. Adv. Mater. Sci. 30, 73−89 (2012).
29.
go back to reference V. V. Rybin, N. Yu. Zolotorevsky, and I. M. Zhukovskii, “Structure evolution and internal stresses on stage of developed plastic deformation of crystalline solids,” Phys. Met. Metallogr. 1, 5–26 (2012). V. V. Rybin, N. Yu. Zolotorevsky, and I. M. Zhukovskii, “Structure evolution and internal stresses on stage of developed plastic deformation of crystalline solids,” Phys. Met. Metallogr. 1, 5–26 (2012).
30.
go back to reference V. V. Rybin, N. Y. Zolotorevskii, and E. A. Ushanova, “Analysis of the misoriented structures in the model copper-copper compound formed by explosion welding,” Tech. Phys. 59, 1819–1832 (2014). CrossRef V. V. Rybin, N. Y. Zolotorevskii, and E. A. Ushanova, “Analysis of the misoriented structures in the model copper-copper compound formed by explosion welding,” Tech. Phys. 59, 1819–1832 (2014). CrossRef
Metadata
Title
Microstructure in the Interface Zone of Bimetal 09Mn2Si Steel/Ti Joint Obtained by Explosion Welding
Authors
O. V. Antonova
I. G. Shirinkina
Yu. P. Besshaposhnikov
Publication date
10-09-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20140045