Skip to main content
Top
Published in:

01-02-2025 | Review Paper

Microstructure-property relationships in piezoelectric-polymer composites: a review

Authors: Zhihao Chen, Fulin Chen, Zinan Tu, Qichang Jiang, Yuanqing Wang, Xinyu Liu, Su Sheng

Published in: Journal of Polymer Research | Issue 2/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Piezoelectric-polymer composites, which integrate piezoelectric ceramic phases with elastic polymer matrices, have emerged as promising materials for applications in smart structures, particularly as sensors and actuators. Their appeal stems from attributes such as low density, high flexibility, robust plasticity, and straightforward performance tunability. The microstructure of these composites, intricately influenced by processing conditions, comprises diverse phases and components with varying compositions and architectures. To harness their full potential, it is imperative to control the evolution of their microstructures and unravel the complex interplay between their structure and properties. This paper reviews key micromechanical models that elucidate the microstructure-property relationship in piezoelectric-polymer composites. Furthermore, it delves into interface theories that explore the influence of surface and interface effects on heterogeneous nanostructured materials. The article also outlines methods for interface design in composite systems, tailored to various filler types and morphologies. Lastly, strategies are proposed to uncover the local structure–property correlations at the interface of piezoelectric-polymer nanocomposites, thereby advancing our comprehension of these advanced materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Polla DL, Francis LF (1998) Processing and characterization of piezoelectric materials and integration into microelectromechanical systems. Annu Rev Mater Sci 28:563–597 Polla DL, Francis LF (1998) Processing and characterization of piezoelectric materials and integration into microelectromechanical systems. Annu Rev Mater Sci 28:563–597
2.
go back to reference B. Jaffe, W. Cook, and H. Jaffe, "Piezoelectric ceramics. Academic Press London" in JCPDS 71–2171 ed 1971 B. Jaffe, W. Cook, and H. Jaffe, "Piezoelectric ceramics. Academic Press London" in JCPDS 71–2171 ed 1971
3.
go back to reference Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52:746–775PubMed Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52:746–775PubMed
4.
go back to reference Lee HJ, Zhang S, Bar-Cohen Y, Sherrit S (2014) High temperature, high power piezoelectric composite transducers. Sensors 14:14526–14552PubMedPubMedCentral Lee HJ, Zhang S, Bar-Cohen Y, Sherrit S (2014) High temperature, high power piezoelectric composite transducers. Sensors 14:14526–14552PubMedPubMedCentral
5.
go back to reference Yang Y, Chen Z, Song X, Zhu B, Hsiai T, Wu P-I et al (2016) Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 22:414–421 Yang Y, Chen Z, Song X, Zhu B, Hsiai T, Wu P-I et al (2016) Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 22:414–421
6.
go back to reference Badcock R, Birt E (2000) The use of 0–3 piezocomposite embedded Lamb wave sensors for detection of damage in advanced fibre composites. Smart Mater Struct 9:291 Badcock R, Birt E (2000) The use of 0–3 piezocomposite embedded Lamb wave sensors for detection of damage in advanced fibre composites. Smart Mater Struct 9:291
7.
go back to reference Furukawa T, Ishida K, Fukada E (1979) Piezoelectric properties in the composite systems of polymers and PZT ceramics. J Appl Phys 50:4904–4912 Furukawa T, Ishida K, Fukada E (1979) Piezoelectric properties in the composite systems of polymers and PZT ceramics. J Appl Phys 50:4904–4912
8.
go back to reference Newnham R, Skinner D, Cross L (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536 Newnham R, Skinner D, Cross L (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536
9.
go back to reference Wongmaneerung R, Yimnirun R, Ananta S (2009) Fabrication and characterization of perovskite ferroelectric PMN/PT ceramic nanocomposites. J Mater Sci 44:5428–5440 Wongmaneerung R, Yimnirun R, Ananta S (2009) Fabrication and characterization of perovskite ferroelectric PMN/PT ceramic nanocomposites. J Mater Sci 44:5428–5440
10.
go back to reference Friedrich K (1998) Mesoscopic aspects of polymer composites: Processing, structure and properties. J Mater Sci 33:5535–5556 Friedrich K (1998) Mesoscopic aspects of polymer composites: Processing, structure and properties. J Mater Sci 33:5535–5556
11.
go back to reference Wu X, Luo Q, Yin S et al (2021) Organic/inorganic thermoelectric composites electrochemical synthesis, properties, and applications. J Mater Sci 56:19311–19328 Wu X, Luo Q, Yin S et al (2021) Organic/inorganic thermoelectric composites electrochemical synthesis, properties, and applications. J Mater Sci 56:19311–19328
12.
go back to reference Ji YZ, Wang Z, Wang B, Chen Y, Zhang T, Chen LQ et al (2017) Effect of Meso-Scale Geometry on Piezoelectric Performances of Additively Manufactured Flexible Polymer-Pb (ZrxTi1-x) O3 Composites. Adv Eng Mater 19(6):1600803 Ji YZ, Wang Z, Wang B, Chen Y, Zhang T, Chen LQ et al (2017) Effect of Meso-Scale Geometry on Piezoelectric Performances of Additively Manufactured Flexible Polymer-Pb (ZrxTi1-x) O3 Composites. Adv Eng Mater 19(6):1600803
13.
go back to reference Liu M, Chen Y, Cheng W et al (2022) Controllable electromechanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force. Capillarity 5(3):51–64 Liu M, Chen Y, Cheng W et al (2022) Controllable electromechanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force. Capillarity 5(3):51–64
14.
go back to reference Li Z, Wang S, Ding W et al (2023) Mechanically robust, flexible hybrid tactile sensor with microstructured sensitive composites for human-cyber-physical systems. Compos Sci Technol 244:110303 Li Z, Wang S, Ding W et al (2023) Mechanically robust, flexible hybrid tactile sensor with microstructured sensitive composites for human-cyber-physical systems. Compos Sci Technol 244:110303
15.
go back to reference Li X, Li Z, Wang S, Yang W (2024) Electromechanically stable and flexible poro-hyperelastic composites for multimodal robotic tactile sensing. Compos Sci Technol 257:110821 Li X, Li Z, Wang S, Yang W (2024) Electromechanically stable and flexible poro-hyperelastic composites for multimodal robotic tactile sensing. Compos Sci Technol 257:110821
16.
go back to reference Kim K, Zhu W, Qu X, Aaronson C, McCall W, Chen S et al (2014) 3D Optical Printing of Piezoelectric Nanoparticle- Polymer Composite Materials. ACS Nano 8:9799–9806PubMed Kim K, Zhu W, Qu X, Aaronson C, McCall W, Chen S et al (2014) 3D Optical Printing of Piezoelectric Nanoparticle- Polymer Composite Materials. ACS Nano 8:9799–9806PubMed
17.
go back to reference FV. Loock, DB. Deutz, S. v. d. Zwaag, and WA. Groen, "Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear" Smart Materials and Structures, vol. 25 p. 085039 2016 FV. Loock, DB. Deutz, S. v. d. Zwaag, and WA. Groen, "Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear" Smart Materials and Structures, vol. 25 p. 085039 2016
18.
go back to reference Han K, Safari A, Riman RE (1991) Colloidal Processing for Improved Piezoelectric Properties of Flexible 0–3 Ceramic-Polymer Composites. J Am Ceram Soc 74:1699–1702 Han K, Safari A, Riman RE (1991) Colloidal Processing for Improved Piezoelectric Properties of Flexible 0–3 Ceramic-Polymer Composites. J Am Ceram Soc 74:1699–1702
19.
go back to reference Taunaumang H, Guy I, Chan HL (1994) Electromechanical properties of 1–3 piezoelectric ceramic/piezoelectric polymer composites. J Appl Phys 76:484–489 Taunaumang H, Guy I, Chan HL (1994) Electromechanical properties of 1–3 piezoelectric ceramic/piezoelectric polymer composites. J Appl Phys 76:484–489
20.
go back to reference Li Z, Zhang D, Wu K (2001) Cement matrix 2–2 piezoelectric composite—Part 1. Sensory effect. Mater Struct 34:506–512 Li Z, Zhang D, Wu K (2001) Cement matrix 2–2 piezoelectric composite—Part 1. Sensory effect. Mater Struct 34:506–512
21.
go back to reference Cao W, Zhang Q, Cross LE (1993) Theoretical study on the static performance of piezoelectric ceramic-polymer composites with 2–2 connectivity. IEEE Trans Ultrason Ferroelectr Freq Control 40:103–109PubMed Cao W, Zhang Q, Cross LE (1993) Theoretical study on the static performance of piezoelectric ceramic-polymer composites with 2–2 connectivity. IEEE Trans Ultrason Ferroelectr Freq Control 40:103–109PubMed
22.
go back to reference Hayashi T, Sugihara S, Okazaki K (1991) Processing of porous 3–3 PZT ceramics using capsule-free O2-HIP. Jpn J Appl Phys 30:2243 Hayashi T, Sugihara S, Okazaki K (1991) Processing of porous 3–3 PZT ceramics using capsule-free O2-HIP. Jpn J Appl Phys 30:2243
23.
go back to reference Li Y-Y, Li L-T, Li B (2015) Direct ink writing of 3–3 piezoelectric composite. J Alloy Compd 620:125–128 Li Y-Y, Li L-T, Li B (2015) Direct ink writing of 3–3 piezoelectric composite. J Alloy Compd 620:125–128
24.
go back to reference Nguyen B, Challagulla KS, Venkatesh T, Hadjiloizi D, Georgiades A (2016) Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3–3 piezoelectric foams. Smart Mater Struct 25:125028 Nguyen B, Challagulla KS, Venkatesh T, Hadjiloizi D, Georgiades A (2016) Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3–3 piezoelectric foams. Smart Mater Struct 25:125028
25.
go back to reference Bowen C, Perry A, Kara H, Mahon S (2001) Analytical modelling of 3–3 piezoelectric composites. J Eur Ceram Soc 21:1463–1467 Bowen C, Perry A, Kara H, Mahon S (2001) Analytical modelling of 3–3 piezoelectric composites. J Eur Ceram Soc 21:1463–1467
26.
go back to reference Bowen CR, Topolov VY (2003) Piezoelectric sensitivity of PbTiO3-based ceramic/polymer composites with 0–3 and 3–3 connectivity. Acta Mater 51:4965–4976 Bowen CR, Topolov VY (2003) Piezoelectric sensitivity of PbTiO3-based ceramic/polymer composites with 0–3 and 3–3 connectivity. Acta Mater 51:4965–4976
27.
go back to reference Gullapalli H, Vemuru VS, Kumar A, Botello-Mendez A, Vajtai R, Terrones M et al (2010) Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small 6:1641–1646PubMed Gullapalli H, Vemuru VS, Kumar A, Botello-Mendez A, Vajtai R, Terrones M et al (2010) Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small 6:1641–1646PubMed
28.
go back to reference D. Rabbe, "Computational Materials Science: The Simulation of Materials Microstructure and Properties". ed: Wiley VCH Weinheim 1998 D. Rabbe, "Computational Materials Science: The Simulation of Materials Microstructure and Properties". ed: Wiley VCH Weinheim 1998
29.
go back to reference He Y, Xie D, Zhang X (2014) The structure, microphase-separated morphology, and property of polyurethanes and polyureas. J Mater Sci 49:7339–7352 He Y, Xie D, Zhang X (2014) The structure, microphase-separated morphology, and property of polyurethanes and polyureas. J Mater Sci 49:7339–7352
30.
go back to reference Mukhopadhyay A, Basu B (2007) Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int Mater Rev 52:257–288 Mukhopadhyay A, Basu B (2007) Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review. Int Mater Rev 52:257–288
31.
go back to reference Voigt W (1887) Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. Abh Kgl Ges Wiss Göttingen Math Kl 34:3–51 Voigt W (1887) Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. Abh Kgl Ges Wiss Göttingen Math Kl 34:3–51
32.
go back to reference Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J Appl Math Mech 9:49–58 Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J Appl Math Mech 9:49–58
33.
go back to reference Newnham RE, Bowen L, Klicker K, Cross L (1980) Composite piezoelectric transducers. Mater Des 2:93–106 Newnham RE, Bowen L, Klicker K, Cross L (1980) Composite piezoelectric transducers. Mater Des 2:93–106
34.
go back to reference Banno H (1983) Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles. Ferroelectrics 50:3–12 Banno H (1983) Recent developments of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles. Ferroelectrics 50:3–12
35.
go back to reference Dunn M, Taya M (1993) Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int J Solids Struct 30:161–175 Dunn M, Taya M (1993) Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int J Solids Struct 30:161–175
36.
go back to reference M. L. Dunn and M. Taya, 1993 "An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. pp. 265–287 M. L. Dunn and M. Taya, 1993 "An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. pp. 265–287
37.
go back to reference Huang JH, Kuo W-S (1996) Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater 44:4889–4898 Huang JH, Kuo W-S (1996) Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater 44:4889–4898
38.
go back to reference Nan C-W, Liu L, Guo D, Li L (2000) Calculations of the effective properties of 1–3 type piezoelectric composites with various rod/fibre orientations. J Phys D Appl Phys 33:2977 Nan C-W, Liu L, Guo D, Li L (2000) Calculations of the effective properties of 1–3 type piezoelectric composites with various rod/fibre orientations. J Phys D Appl Phys 33:2977
39.
go back to reference Raju B, Hiremath S, Mahapatra D (2018) A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Compos Struct 204:607–619 Raju B, Hiremath S, Mahapatra D (2018) A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Compos Struct 204:607–619
40.
go back to reference J. D. Eshelby, 1957 "The determination of the elastic field of an ellipsoidal inclusion and related problems" in Proceedings of the Royal Society of London A: Mathematical. Phys Eng Sci. 241 376–396 J. D. Eshelby, 1957 "The determination of the elastic field of an ellipsoidal inclusion and related problems" in Proceedings of the Royal Society of London A: Mathematical. Phys Eng Sci. 241 376–396
41.
go back to reference T. Belytschko, W. K. Liu, B. Moran, and K. Elkhodary, Nonlinear finite elements for continua and structures: John wiley & sons. 2013 T. Belytschko, W. K. Liu, B. Moran, and K. Elkhodary, Nonlinear finite elements for continua and structures: John wiley & sons. 2013
42.
go back to reference Poizat C, Sester M (1999) Effective properties of composites with embedded piezoelectric fibres. Comput Mater Sci 16:89–97 Poizat C, Sester M (1999) Effective properties of composites with embedded piezoelectric fibres. Comput Mater Sci 16:89–97
43.
go back to reference Pettermann HE, Suresh S (2000) A comprehensive unit cell model: a study of coupled effects in piezoelectric 1–3 composites. Int J Solids Struct 37:5447–5464 Pettermann HE, Suresh S (2000) A comprehensive unit cell model: a study of coupled effects in piezoelectric 1–3 composites. Int J Solids Struct 37:5447–5464
44.
go back to reference Kar-Gupta R, Venkatesh T (2005) Electromechanical response of 1–3 piezoelectric composites: Effect of poling characteristics. J Appl Phys 98:054102 Kar-Gupta R, Venkatesh T (2005) Electromechanical response of 1–3 piezoelectric composites: Effect of poling characteristics. J Appl Phys 98:054102
45.
go back to reference Goodarzi V, Saeb MR (2016) Modeling and interpreting particle shape dependence of electric displacement distribution in the piezoelectric polymer composites. J Intell Mater Syst Struct 27:2395–2407 Goodarzi V, Saeb MR (2016) Modeling and interpreting particle shape dependence of electric displacement distribution in the piezoelectric polymer composites. J Intell Mater Syst Struct 27:2395–2407
46.
go back to reference Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323 Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323
47.
go back to reference Gurtin M, Weissmüller J, Larche F (1998) A general theory of curved deformable interfaces in solids at equilibrium. Philos Mag A 78(5):1093–1109 Gurtin M, Weissmüller J, Larche F (1998) A general theory of curved deformable interfaces in solids at equilibrium. Philos Mag A 78(5):1093–1109
48.
go back to reference Chen T (2008) Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech 196(3):205–217 Chen T (2008) Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech 196(3):205–217
49.
go back to reference Bao Y, Xu L, Pang H et al (2013) Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures. J Mater Sci 48:4892–4898 Bao Y, Xu L, Pang H et al (2013) Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures. J Mater Sci 48:4892–4898
50.
go back to reference Cao W, Zhang Q, Cross LE (1993) Theoretical study on the static performance of piezoelectric ceramic-polymer composites with 2–2 connectivity. IEEE Trans Ultrason Ferroelectr Freq Control 40(2):103–109PubMed Cao W, Zhang Q, Cross LE (1993) Theoretical study on the static performance of piezoelectric ceramic-polymer composites with 2–2 connectivity. IEEE Trans Ultrason Ferroelectr Freq Control 40(2):103–109PubMed
51.
go back to reference Ou Z, Pang S (2011) A screw dislocation interacting with a coated nano-inhomogeneity incorporating interface stress. Mater Sci Eng, A 528(6):2762–2775 Ou Z, Pang S (2011) A screw dislocation interacting with a coated nano-inhomogeneity incorporating interface stress. Mater Sci Eng, A 528(6):2762–2775
52.
go back to reference Shodja H, Ahmadzadeh-Bakhshayesh H, Gutkin MY (2012) Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects. Int J Solids Struct 49(5):759–770 Shodja H, Ahmadzadeh-Bakhshayesh H, Gutkin MY (2012) Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects. Int J Solids Struct 49(5):759–770
53.
go back to reference Wang L, Lau J, Thomas EL, Boyce MC (2011) Co-continuous composite materials for stiffness, strength, and energy dissipation. Adv Mater 23(13):1524–1529PubMed Wang L, Lau J, Thomas EL, Boyce MC (2011) Co-continuous composite materials for stiffness, strength, and energy dissipation. Adv Mater 23(13):1524–1529PubMed
54.
go back to reference Chen Y, Wang L (2014) Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Appl Phys Lett 105:191907 Chen Y, Wang L (2014) Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Appl Phys Lett 105:191907
55.
go back to reference Al-Ketan O, Abu Al-Rub R (2019) Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv Eng Mater 21(10):1900524 Al-Ketan O, Abu Al-Rub R (2019) Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv Eng Mater 21(10):1900524
56.
go back to reference Siqveland LM, Skjæveland SM (2021) Derivations of the Young-Laplace equation. Capillarity 4(2):23–30 Siqveland LM, Skjæveland SM (2021) Derivations of the Young-Laplace equation. Capillarity 4(2):23–30
57.
go back to reference Han L, Che S (2018) An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems. Adv Mater 30(17):1705708 Han L, Che S (2018) An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems. Adv Mater 30(17):1705708
58.
go back to reference H. Xu, Y. M. Xie, R. Chan, S. Zhou, Piezoelectric properties of triply periodic minimum surface structures, Compos. Sci. Technol. 200 (2020) 108417(10pp) H. Xu, Y. M. Xie, R. Chan, S. Zhou, Piezoelectric properties of triply periodic minimum surface structures, Compos. Sci. Technol. 200 (2020) 108417(10pp)
59.
go back to reference Song X, He L, Yang W, Wang Z, Chen Z, Guo J et al (2019) Additive manufacturing of bi-continuous piezocomposites with triply periodic phase interfaces for combined flexibility and piezoelectricity. J Manuf Sci Eng 141(11):1–17 Song X, He L, Yang W, Wang Z, Chen Z, Guo J et al (2019) Additive manufacturing of bi-continuous piezocomposites with triply periodic phase interfaces for combined flexibility and piezoelectricity. J Manuf Sci Eng 141(11):1–17
60.
go back to reference Chen Y, Zhang J, Li Z et al (2023) Manufacturing Technology of Lightweight Fiber-Reinforced Composite Structures in Aerospace: Current Situation and toward Intellectualization. Aerospace 10:206 Chen Y, Zhang J, Li Z et al (2023) Manufacturing Technology of Lightweight Fiber-Reinforced Composite Structures in Aerospace: Current Situation and toward Intellectualization. Aerospace 10:206
61.
go back to reference Chen Y, Zhang J, Li Z et al (2023) Intelligent methods for optimization design of lightweight fiber-reinforced composite structures: A review and the-state-of-the-art. Front Mater 10:1125328 Chen Y, Zhang J, Li Z et al (2023) Intelligent methods for optimization design of lightweight fiber-reinforced composite structures: A review and the-state-of-the-art. Front Mater 10:1125328
62.
go back to reference Wang S, Ding W, Li Z et al (2023) A size-dependent quasi-3D model for bending and buckling of porous functionally graded curved nanobeam. Int J Eng Sci 193:103962 Wang S, Ding W, Li Z et al (2023) A size-dependent quasi-3D model for bending and buckling of porous functionally graded curved nanobeam. Int J Eng Sci 193:103962
63.
go back to reference Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage. Adv Mater 25:6334PubMed Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage. Adv Mater 25:6334PubMed
64.
go back to reference Sinha AK, Bhattacharya S, Narang HK (2021) Abaca fibre reinforced polymer composites: a review. J Mater Sci 56:4569–4587 Sinha AK, Bhattacharya S, Narang HK (2021) Abaca fibre reinforced polymer composites: a review. J Mater Sci 56:4569–4587
65.
go back to reference Bradley WL, Grant TS (1995) The effect of the moisture absorption on the interfacial strength of polymeric matrix composites. J Mater Sci 30(21):5537–5542 Bradley WL, Grant TS (1995) The effect of the moisture absorption on the interfacial strength of polymeric matrix composites. J Mater Sci 30(21):5537–5542
66.
go back to reference Jiang J, Zhang X, Dan Z et al (2017) Tuning Phase Composition of Polymer Nanocomposites toward High Energy Density and High Discharge Efficiency by Nonequilibrium Processing. ACS Appl Mater Interfaces 9(35):29717–29731PubMed Jiang J, Zhang X, Dan Z et al (2017) Tuning Phase Composition of Polymer Nanocomposites toward High Energy Density and High Discharge Efficiency by Nonequilibrium Processing. ACS Appl Mater Interfaces 9(35):29717–29731PubMed
67.
go back to reference Ravandi M, Teo WS, Yong MS, Tay TE (2018) Prediction of Mode I interlaminar fracture toughness of stitched flax fiber composites. J Mater Sci 53(6):4173–4188 Ravandi M, Teo WS, Yong MS, Tay TE (2018) Prediction of Mode I interlaminar fracture toughness of stitched flax fiber composites. J Mater Sci 53(6):4173–4188
68.
go back to reference Olhan S, Khatkar V, Behera BK (2021) Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting. J Mater Sci 56:18867–18910 Olhan S, Khatkar V, Behera BK (2021) Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting. J Mater Sci 56:18867–18910
69.
go back to reference Guo M, Jiang J, Shen Z, Lin Y, Nan C-W, Shen Y (2019) High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater Today 29:49–67 Guo M, Jiang J, Shen Z, Lin Y, Nan C-W, Shen Y (2019) High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater Today 29:49–67
70.
go back to reference Singh D, Choudhary A, Garg A (2018) Flexible and robust piezoelectric polymer nanocomposites based energy harvesters. ACS Appl Mater Interfaces 10:2793PubMed Singh D, Choudhary A, Garg A (2018) Flexible and robust piezoelectric polymer nanocomposites based energy harvesters. ACS Appl Mater Interfaces 10:2793PubMed
71.
go back to reference Jeong C, Baek C, Kingon A, Park K, Kim S (2018) Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small 14:1704022 Jeong C, Baek C, Kingon A, Park K, Kim S (2018) Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester. Small 14:1704022
72.
go back to reference Luo H, Zhou X, Ellingford C et al (2019) Interface design for high energy density polymer nanocomposites. Chem Soc Rev 48:4424PubMed Luo H, Zhou X, Ellingford C et al (2019) Interface design for high energy density polymer nanocomposites. Chem Soc Rev 48:4424PubMed
73.
go back to reference Ouyang W, Sheng S, Chen F et al (2024) Enhanced dielectric properties of ferroelectric polymer composites by surface-modified BaTiO3 particles. Polym Compos 45(8):7574–7585 Ouyang W, Sheng S, Chen F et al (2024) Enhanced dielectric properties of ferroelectric polymer composites by surface-modified BaTiO3 particles. Polym Compos 45(8):7574–7585
74.
go back to reference Cho S, Lee J, Jang J (2015) Enhanced crystallinity, dielectric, and energy harvesting performances of surface-treated barium titanate hollow nanospheres/PVDF nanocomposites. Adv Mater Interfaces 2:1500098 Cho S, Lee J, Jang J (2015) Enhanced crystallinity, dielectric, and energy harvesting performances of surface-treated barium titanate hollow nanospheres/PVDF nanocomposites. Adv Mater Interfaces 2:1500098
75.
go back to reference Liang J, Wang S, Luo Z et al (2023) Correlating the Interfacial Polar-Phase Structure to the Local Chemistry in Ferroelectric Polymer Nanocomposites by Combined Scanning Probe Microscopy. Nano-Micro Lett 15:5 Liang J, Wang S, Luo Z et al (2023) Correlating the Interfacial Polar-Phase Structure to the Local Chemistry in Ferroelectric Polymer Nanocomposites by Combined Scanning Probe Microscopy. Nano-Micro Lett 15:5
76.
go back to reference Huang ZX, Li LW, Huang YZ et al (2024) Self-poled piezoelectric polymer composites via melt-state energy implantation. Nat Commun 15:819PubMedPubMedCentral Huang ZX, Li LW, Huang YZ et al (2024) Self-poled piezoelectric polymer composites via melt-state energy implantation. Nat Commun 15:819PubMedPubMedCentral
77.
go back to reference Su Y, Li W, Cheng X et al (2022) High-performance piezoelectric composites via β phase programming. Nat Commun 13:4867PubMedPubMedCentral Su Y, Li W, Cheng X et al (2022) High-performance piezoelectric composites via β phase programming. Nat Commun 13:4867PubMedPubMedCentral
Metadata
Title
Microstructure-property relationships in piezoelectric-polymer composites: a review
Authors
Zhihao Chen
Fulin Chen
Zinan Tu
Qichang Jiang
Yuanqing Wang
Xinyu Liu
Su Sheng
Publication date
01-02-2025
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 2/2025
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-025-04264-9

Premium Partners