Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 14/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Microstructures, Properties and Strengthening Mechanisms of Titanium Matrix Composites Reinforced by In Situ Synthesized TiC and Unreacted Carbon Nanotubes

Author: D. X. Liu

Published in: Physics of Metals and Metallography | Issue 14/2021

Login to get access
share
SHARE

Abstract

Carbon nanotubes (CNTs) are regarded as an excellent reinforcement for reinforcing metal matrix composites. However, they are extremely difficult to disperse since nano-scaled CNTs have large specific surface area, generally leading to agglomeration due to the large van der Waals attractive forces. In this study, CNTs as carbon sources were added into Ti6Al4V matrix, a dry jar-milling process without milling balls was performed to greatly reduce the structural damage of CNTs and simultaneously meet the requirements of dispersion homogeneity. In situ synthesized TiC and unreacted CNTs reinforced Ti6Al4V matrix composites (TMCs) were successfully prepared by the fast manufacturing process via spark plasma sintering. The microstructures and mechanical properties including microhardness, compressive yield strength, ultimate compressive strength and plastic strain of the Ti6Al4V alloy and the TMCs prepared by different CNTs content were studied to evaluate the strengthening effects of the reinforcements on Ti6Al4V matrix.
Literature
1.
go back to reference E. Alabort, D. Barba, M. R. Shagiev, M. A. Murzinova, R. M. Galeyev, O. R. Valiakhmetov, A. F. Aletdinov, and R. C. Reed, “Alloys-by-design: application to titanium alloys for optimal superplasticity,” Acta Mater. 178, 275–287 (2019). CrossRef E. Alabort, D. Barba, M. R. Shagiev, M. A. Murzinova, R. M. Galeyev, O. R. Valiakhmetov, A. F. Aletdinov, and R. C. Reed, “Alloys-by-design: application to titanium alloys for optimal superplasticity,” Acta Mater. 178, 275–287 (2019). CrossRef
2.
go back to reference E. L. Calvert, A. J. Knowles, J. J. Pope, D. Dye, and M. Jackson, “Novel high strength titanium-titanium composites produced using field-assisted sintering technology (FAST),” Scr. Mater. 159, 51–57 (2019). CrossRef E. L. Calvert, A. J. Knowles, J. J. Pope, D. Dye, and M. Jackson, “Novel high strength titanium-titanium composites produced using field-assisted sintering technology (FAST),” Scr. Mater. 159, 51–57 (2019). CrossRef
3.
go back to reference Y. Han, H. R. Wang, Y. D. Cao, W. T. Hou, and S. J. Li, “Improved corrosion resistance of selective laser melted Ti–5Cu alloy using atomized Ti–5Cu powder,” Acta Metall. Sin. 32, 1007–1014 (2019). CrossRef Y. Han, H. R. Wang, Y. D. Cao, W. T. Hou, and S. J. Li, “Improved corrosion resistance of selective laser melted Ti–5Cu alloy using atomized Ti–5Cu powder,” Acta Metall. Sin. 32, 1007–1014 (2019). CrossRef
4.
go back to reference I. G. Zhevtun, P. S. Gordienko, Y. N. Kul’chin, E. P. Subbotin, S. B. Yarusova, and A. V. Golub, “Effects of doping of composite Ti–TiC coatings with transition and valve metals on their structure and mechanical properties,” Phys. Met. Metallogr. 120, 25–31 (2019). CrossRef I. G. Zhevtun, P. S. Gordienko, Y. N. Kul’chin, E. P. Subbotin, S. B. Yarusova, and A. V. Golub, “Effects of doping of composite Ti–TiC coatings with transition and valve metals on their structure and mechanical properties,” Phys. Met. Metallogr. 120, 25–31 (2019). CrossRef
5.
go back to reference Y. J. Hao, J. X. Liu, J. C. Li, S. K. Li, Q. H. Zou, and X. W. Chen, “Rapid preparation of TiC reinforced Ti6Al4V based composites by carburizing method through spark plasma sintering technique,” Mater. Des. 65, 94–97 (2015). CrossRef Y. J. Hao, J. X. Liu, J. C. Li, S. K. Li, Q. H. Zou, and X. W. Chen, “Rapid preparation of TiC reinforced Ti6Al4V based composites by carburizing method through spark plasma sintering technique,” Mater. Des. 65, 94–97 (2015). CrossRef
6.
go back to reference W. H. Wei, Q. Zhang, W. J. Wu, H. Z. Cao, J. Shen, S. Q. Fan, and X. M. Duan, “Agglomeration-free nanoscale TiC reinforced titanium matrix composites achieved by in situ laser additive manufacturing,” Scr. Mater. 187, 310–316 (2020). CrossRef W. H. Wei, Q. Zhang, W. J. Wu, H. Z. Cao, J. Shen, S. Q. Fan, and X. M. Duan, “Agglomeration-free nanoscale TiC reinforced titanium matrix composites achieved by in situ laser additive manufacturing,” Scr. Mater. 187, 310–316 (2020). CrossRef
7.
go back to reference R. A. Gaisin, V. M. Imayev, and R. M. Imayev, “Microstructure and mechanical properties of a near-alpha-titanium-alloy/TiB composite prepared in situ by casting and subjected to deformation and heat treatment,” Phys. Met. Metallogr. 119, 907–916 (2018). CrossRef R. A. Gaisin, V. M. Imayev, and R. M. Imayev, “Microstructure and mechanical properties of a near-alpha-titanium-alloy/TiB composite prepared in situ by casting and subjected to deformation and heat treatment,” Phys. Met. Metallogr. 119, 907–916 (2018). CrossRef
8.
go back to reference S. D. Luo, Q. Li, J. Tian, C. Wang, M. Yan, G. B. Schaffer, and M. Qian, “Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties,” Scr. Mater. 69, 29–32 (2013). CrossRef S. D. Luo, Q. Li, J. Tian, C. Wang, M. Yan, G. B. Schaffer, and M. Qian, “Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties,” Scr. Mater. 69, 29–32 (2013). CrossRef
9.
go back to reference S. Gorsse and D. B. Miracle, “Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements,” Acta Mater. 51, 2427 (2003). CrossRef S. Gorsse and D. B. Miracle, “Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements,” Acta Mater. 51, 2427 (2003). CrossRef
10.
go back to reference H. A. Rastegari, S. Asgari, and S. M. Abbasi, “Producing Ti–6Al–4V/TiC composite with good ductility by vacuum induction melting furnace and hot rolling process,” Mater. Des. 32, 5010–5014 (2011). CrossRef H. A. Rastegari, S. Asgari, and S. M. Abbasi, “Producing Ti–6Al–4V/TiC composite with good ductility by vacuum induction melting furnace and hot rolling process,” Mater. Des. 32, 5010–5014 (2011). CrossRef
11.
go back to reference Z. J. Wei, L. Cao, H. W. Wang, and C. M. Zou, “Microstructure and mechanical properties of TiC/Ti–6Al–4V composites processed by in situ casting route,” Mater. Sci. Technol. 27, 1321–1327 (2011). CrossRef Z. J. Wei, L. Cao, H. W. Wang, and C. M. Zou, “Microstructure and mechanical properties of TiC/Ti–6Al–4V composites processed by in situ casting route,” Mater. Sci. Technol. 27, 1321–1327 (2011). CrossRef
12.
go back to reference L. Jia, X. S. Wang, B. A. Chen, H. Imai, S. F. Li, Z. L. Lu, and K. Kondoh, “Microstructural evolution and competitive reaction behavior of Ti–B 4C system under solid-state sintering,” J. Alloys Compd. 687, 1004–1011 (2016). CrossRef L. Jia, X. S. Wang, B. A. Chen, H. Imai, S. F. Li, Z. L. Lu, and K. Kondoh, “Microstructural evolution and competitive reaction behavior of Ti–B 4C system under solid-state sintering,” J. Alloys Compd. 687, 1004–1011 (2016). CrossRef
13.
go back to reference X. Feng, J. H. Sui, W. Cai, and A. L. Liu, “Improving wear resistance of TiNi matrix composites reinforced by carbon nanotubes and in situ TiC,” Scr. Mater. 64, 824–827 (2011). CrossRef X. Feng, J. H. Sui, W. Cai, and A. L. Liu, “Improving wear resistance of TiNi matrix composites reinforced by carbon nanotubes and in situ TiC,” Scr. Mater. 64, 824–827 (2011). CrossRef
14.
go back to reference W. J. Lu, Z. F. Yang, D. Zhang, X. N. Zhang, R. J. Wu, T. Sakata, and H. Mori, “Microstructure and compressive properties of in situ synthesized TiC/Ti composites,” Int. J. Mater. Res. 93, 219 (2002). W. J. Lu, Z. F. Yang, D. Zhang, X. N. Zhang, R. J. Wu, T. Sakata, and H. Mori, “Microstructure and compressive properties of in situ synthesized TiC/Ti composites,” Int. J. Mater. Res. 93, 219 (2002).
15.
go back to reference M. S. K. K. Y. Nartu, S. A. Mantri, M. V. Pantawane, Y. H. Ho, B. McWilliams, K. Cho, N. B. Dahotre, and R. Banerjee, “In situ reactions during direct laser deposition of Ti–B 4C composites,” Scr. Mater. 183, 28–32 (2020). CrossRef M. S. K. K. Y. Nartu, S. A. Mantri, M. V. Pantawane, Y. H. Ho, B. McWilliams, K. Cho, N. B. Dahotre, and R. Banerjee, “In situ reactions during direct laser deposition of Ti–B 4C composites,” Scr. Mater. 183, 28–32 (2020). CrossRef
16.
go back to reference W. H. Wei, Z. N. Shao, J. Shen, and X. M. Duan, “Microstructure and mechanical properties of in situ formed TiC-reinforced Ti–6Al–4V matrix composites,” Mater. Sci. Technol. 34, 191–198 (2018). CrossRef W. H. Wei, Z. N. Shao, J. Shen, and X. M. Duan, “Microstructure and mechanical properties of in situ formed TiC-reinforced Ti–6Al–4V matrix composites,” Mater. Sci. Technol. 34, 191–198 (2018). CrossRef
17.
go back to reference Y. D. Tan, H. N. Cai, X. W. Cheng, Z. L. Ma, Z. Q. Xu, and Z. F. Zhou, “Microstructural and mechanical properties of in situ micro-laminated TiC/Ti composite synthesized,” Mater. Lett. 228, 1–4 (2018). CrossRef Y. D. Tan, H. N. Cai, X. W. Cheng, Z. L. Ma, Z. Q. Xu, and Z. F. Zhou, “Microstructural and mechanical properties of in situ micro-laminated TiC/Ti composite synthesized,” Mater. Lett. 228, 1–4 (2018). CrossRef
18.
go back to reference B. J. Choi and Y. J. Kim, “In-situ (TiB + TiC) particulate reinforced titanium matrix composites: effect of B 4C size and content,” J. Compos., Technol. Res. 19, 1301–1307 (2013). B. J. Choi and Y. J. Kim, “In-situ (TiB + TiC) particulate reinforced titanium matrix composites: effect of B 4C size and content,” J. Compos., Technol. Res. 19, 1301–1307 (2013).
19.
go back to reference K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, and B. Fugetsu, “Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes,” Compos. Sci. Technol. 69, 1077–1081 (2009). CrossRef K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, and B. Fugetsu, “Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes,” Compos. Sci. Technol. 69, 1077–1081 (2009). CrossRef
20.
go back to reference X. L. Sun, Y. F. Han, S. C. Cao, P. K. Qiu, and W. J. Lu, “Rapid in situ reaction synthesis of novel TiC and carbon nanotubes reinforced titanium matrix composites,” J. Mater. Sci. Technol. 33, 1165–1171 (2017). CrossRef X. L. Sun, Y. F. Han, S. C. Cao, P. K. Qiu, and W. J. Lu, “Rapid in situ reaction synthesis of novel TiC and carbon nanotubes reinforced titanium matrix composites,” J. Mater. Sci. Technol. 33, 1165–1171 (2017). CrossRef
21.
go back to reference Y. Li, N. Liu, and Y. Li, “Carbon nanotube/ultrafine grade Ti(C, N) based cermets composite,” Mater. Sci. Technol. 27, 1287–1293 (2011). CrossRef Y. Li, N. Liu, and Y. Li, “Carbon nanotube/ultrafine grade Ti(C, N) based cermets composite,” Mater. Sci. Technol. 27, 1287–1293 (2011). CrossRef
22.
go back to reference S. F. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, and J. Umeda, “Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in situ synthesized TiC–TiB,” Mater. Sci. Eng., A 628, 75–83 (2015). CrossRef S. F. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, and J. Umeda, “Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in situ synthesized TiC–TiB,” Mater. Sci. Eng., A 628, 75–83 (2015). CrossRef
23.
go back to reference M. I. De Barros, D. Rats, L. Vandenbulcke, and G. Farges, “Influence of internal diffusion barriers on carbon diffusion in pure titanium and Ti–6Al–4V during diamond deposition,” Diamond Relat. Mater. 8, 1022–1032 (1999). CrossRef M. I. De Barros, D. Rats, L. Vandenbulcke, and G. Farges, “Influence of internal diffusion barriers on carbon diffusion in pure titanium and Ti–6Al–4V during diamond deposition,” Diamond Relat. Mater. 8, 1022–1032 (1999). CrossRef
24.
go back to reference S. F. Li, B. Sun, H. Imai, T. Mimoto, and K. Kondoh, “Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite,” Composites, Part A 48, 57–66 (2013). CrossRef S. F. Li, B. Sun, H. Imai, T. Mimoto, and K. Kondoh, “Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite,” Composites, Part A 48, 57–66 (2013). CrossRef
25.
go back to reference D. D. Gu, Y. F. Shen, and G. B. Meng, “Growth morphologies and mechanisms of TiC grains during selective laser melting of Ti–Al–C composite powder,” Mater. Lett. 63, 2536–2538 (2009). CrossRef D. D. Gu, Y. F. Shen, and G. B. Meng, “Growth morphologies and mechanisms of TiC grains during selective laser melting of Ti–Al–C composite powder,” Mater. Lett. 63, 2536–2538 (2009). CrossRef
26.
go back to reference L. Z. Wang and W. H. Wei, “Microstructure and mechanical properties of carbon nanotube-reinforced ZK61 magnesium alloy composites prepared by spark plasma sintering,” Int. J. Mater. Res. 108, 192–201 (2017). CrossRef L. Z. Wang and W. H. Wei, “Microstructure and mechanical properties of carbon nanotube-reinforced ZK61 magnesium alloy composites prepared by spark plasma sintering,” Int. J. Mater. Res. 108, 192–201 (2017). CrossRef
27.
go back to reference S. C. Hong, S. H. Lim, K.J. Lee, D. H. Shin, and K. S. Lee, “Inhibition of abnormal grain growth during isothermal holding after heavy deformation in Nb steel,” ISIJ Int. 42, 1461–1467 (2002). CrossRef S. C. Hong, S. H. Lim, K.J. Lee, D. H. Shin, and K. S. Lee, “Inhibition of abnormal grain growth during isothermal holding after heavy deformation in Nb steel,” ISIJ Int. 42, 1461–1467 (2002). CrossRef
28.
go back to reference J. D. Wang, L. Q. Li, C. W. Tan, H. Liu, and P. P. Lin, “Microstructure and tensile properties of TiC p/Ti6Al4V titanium matrix composites manufactured by laser melting deposition,” J. Mater. Process. Technol. 252, 524–536 (2018). CrossRef J. D. Wang, L. Q. Li, C. W. Tan, H. Liu, and P. P. Lin, “Microstructure and tensile properties of TiC p/Ti6Al4V titanium matrix composites manufactured by laser melting deposition,” J. Mater. Process. Technol. 252, 524–536 (2018). CrossRef
29.
go back to reference J. Li, X. J. Zhang, H. P. Wang, and M. P. Li, “Microstructure and mechanical properties of Ni-based composite coatings reinforced by in situ synthesized TiB 2 + TiC by laser cladding,” Int. J. Min. Met. Mater. 20, 57–64 (2013). CrossRef J. Li, X. J. Zhang, H. P. Wang, and M. P. Li, “Microstructure and mechanical properties of Ni-based composite coatings reinforced by in situ synthesized TiB 2 + TiC by laser cladding,” Int. J. Min. Met. Mater. 20, 57–64 (2013). CrossRef
30.
go back to reference Z. Y. Hu, X. W. Cheng, S. L. Li, H. M. Zhang, H. Wang, Z. H. Zhang, and F. C. Wang, “Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB+TiC)/TC 4 composites,” J. Alloys Compd. 726, 240–253 (2017). CrossRef Z. Y. Hu, X. W. Cheng, S. L. Li, H. M. Zhang, H. Wang, Z. H. Zhang, and F. C. Wang, “Investigation on the microstructure, room and high temperature mechanical behaviors and strengthening mechanisms of the (TiB+TiC)/TC 4 composites,” J. Alloys Compd. 726, 240–253 (2017). CrossRef
31.
go back to reference F. Ebrahimi, G. R. Bourne, M. S. Kelly, and T. E. Matthews, “Mechanical properties of nanocrystalline nickel produced by electrodeposition,” Nanostruct. Mater. 11, 343–350 (1999). CrossRef F. Ebrahimi, G. R. Bourne, M. S. Kelly, and T. E. Matthews, “Mechanical properties of nanocrystalline nickel produced by electrodeposition,” Nanostruct. Mater. 11, 343–350 (1999). CrossRef
32.
go back to reference F. Ebrahimi, Q. Zhai, and D. Kong, “Deformation and fracture of electrodeposited copper,” Scr. Mater. 39, 315–321 (1998). CrossRef F. Ebrahimi, Q. Zhai, and D. Kong, “Deformation and fracture of electrodeposited copper,” Scr. Mater. 39, 315–321 (1998). CrossRef
33.
go back to reference Y. J. Wei, Y. Q. Li, L. C. Zhu, Y. Liu, X. Q. Lei, G. Wang, Y. X. Wu, Z. L. Mi, J. B. Liu, H. T. Wang, and H. J. Gao, “Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins,” Nat. Commun. 5, 3580 (2014). CrossRef Y. J. Wei, Y. Q. Li, L. C. Zhu, Y. Liu, X. Q. Lei, G. Wang, Y. X. Wu, Z. L. Mi, J. B. Liu, H. T. Wang, and H. J. Gao, “Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins,” Nat. Commun. 5, 3580 (2014). CrossRef
34.
go back to reference Y. H. Zhao, G. Q. Lin, J. Q. Xiao, C. A. Dong, and L. S. Wen, “TiN/TiC multilayer films deposited by pulse biased arc ion plating,” Vacuum 85, 1–4 (2010). CrossRef Y. H. Zhao, G. Q. Lin, J. Q. Xiao, C. A. Dong, and L. S. Wen, “TiN/TiC multilayer films deposited by pulse biased arc ion plating,” Vacuum 85, 1–4 (2010). CrossRef
Metadata
Title
Microstructures, Properties and Strengthening Mechanisms of Titanium Matrix Composites Reinforced by In Situ Synthesized TiC and Unreacted Carbon Nanotubes
Author
D. X. Liu
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140167