Skip to main content
Top

2019 | OriginalPaper | Chapter

Microwave-Assisted Modification of Graphene and Its Derivatives: Synthesis, Reduction and Exfoliation

Authors : Nitika Devi, Rajesh Kumar, Rajesh K. Singh

Published in: Graphene Functionalization Strategies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nowadays, microwave heating to graphene derivatives for carbon based materials processing (reduction, exfoliation and modifications) is new approach because strong interaction with microwave radiation, fast and localized heating can be achieved in a very short time. For graphene derivatives, microwave heating method is facile, simple, fast, controllable and energy-saving and provides an effective way to control nanoparticle size distribution on the surfaces. By tuning the microwave irradiation power, time and temperature different graphene based morphologies has been studied. For clear understanding, this chapter has been written basically into two parts. In first part, the literature published on interaction of microwave with grapheme derivatives and their transformations into reduced graphene oxide have been surveyed. The oxygen containing functional groups in different forms on surfaces of graphene derivatives strongly interact with microwave incident photons and easily detached from its surfaces. By microwave heating, graphite oxide/graphene oxide are easily reduced to very less oxygen containing graphene and also exfoliate into high surface containing porous graphene. In second part, graphene derivatives have been modified with different kind of metal/metal oxide for various kinds of applications. It is focused on the latest developments and the current status of graphene-metal oxide research using microwave processing. The high power microwave irradiation on graphene derivatives with metal oxide offers homogenous reaction environment and leads to controlled shape, size distribution of nanoparticles without any agglomeration. Detailed overview has been discussed on the possibilities and achievements of graphene derivatives–metal oxide research using microwave-based heating approaches. Microwave-assisted hydrothermal/solvothermal methods have also been described to synthesize metal oxides loaded graphene derivatives.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., Geim, A.K.: Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11(6), 2396–2399 (2011)CrossRef Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., Geim, A.K.: Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11(6), 2396–2399 (2011)CrossRef
2.
go back to reference Ye, J., Craciun, M.F., Koshino, M., Russo, S., Inoue, S., Yuan, H.: Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. U.S.A. 108, 13002 (2011)CrossRef Ye, J., Craciun, M.F., Koshino, M., Russo, S., Inoue, S., Yuan, H.: Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl. Acad. Sci. U.S.A. 108, 13002 (2011)CrossRef
3.
go back to reference Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005)CrossRef Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005)CrossRef
4.
go back to reference Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)CrossRef Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)CrossRef
5.
go back to reference Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRef Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRef
6.
go back to reference Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)CrossRef Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)CrossRef
7.
go back to reference Whitener, K.E., Sheehan, P.E.: Graphene synthesis. Diam. Relat. Mater. 46, 25–34 (2014)CrossRef Whitener, K.E., Sheehan, P.E.: Graphene synthesis. Diam. Relat. Mater. 46, 25–34 (2014)CrossRef
8.
go back to reference Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)CrossRef Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)CrossRef
9.
go back to reference Muñoz, R., Gómez-Aleixandre, C.: Review of CVD synthesis of graphene. Chem. Vap. Depos. 19(10–12), 297–322 (2013)CrossRef Muñoz, R., Gómez-Aleixandre, C.: Review of CVD synthesis of graphene. Chem. Vap. Depos. 19(10–12), 297–322 (2013)CrossRef
10.
go back to reference Srivastava, A., Galande, C., Ci, L., Song, L., Rai, C., Jariwala, D., Kelly, K.F., Ajayan, P.M.: Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem. Mater. 22(11), 3457–3461 (2010)CrossRef Srivastava, A., Galande, C., Ci, L., Song, L., Rai, C., Jariwala, D., Kelly, K.F., Ajayan, P.M.: Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem. Mater. 22(11), 3457–3461 (2010)CrossRef
11.
go back to reference Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large area synthesis of high quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)CrossRef Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large area synthesis of high quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)CrossRef
12.
go back to reference Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)CrossRef Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)CrossRef
13.
go back to reference Juang, Z.Y., Wu, C.Y., Lo, C.W., Chen, W.Y., Huang, C.F., Hwang, J.C., Chen, F.R., Leou, K.C., Tsai, C.H.: Synthesis of graphene on silicon carbide substrates at low temperature. Carbon N. Y. 47(8), 2026–2031 (2009)CrossRef Juang, Z.Y., Wu, C.Y., Lo, C.W., Chen, W.Y., Huang, C.F., Hwang, J.C., Chen, F.R., Leou, K.C., Tsai, C.H.: Synthesis of graphene on silicon carbide substrates at low temperature. Carbon N. Y. 47(8), 2026–2031 (2009)CrossRef
14.
go back to reference Abdolhosseinzadeh, S., Asgharzadeh, H., Kim, H.S.: Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 1–7 (2015)CrossRef Abdolhosseinzadeh, S., Asgharzadeh, H., Kim, H.S.: Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 1–7 (2015)CrossRef
15.
go back to reference Krane, N.: Preparation of graphene selected topics in physics: physics of nanoscale carbon. Growth Lakel. 4(4), 1–5 (1993) Krane, N.: Preparation of graphene selected topics in physics: physics of nanoscale carbon. Growth Lakel. 4(4), 1–5 (1993)
16.
go back to reference Thostenson, E.T., Chou, T.: Microwave processing: fundamentals and applications. Compos. Part A Appl. Sci. Manuf. 30, 1055–1071 (1999)CrossRef Thostenson, E.T., Chou, T.: Microwave processing: fundamentals and applications. Compos. Part A Appl. Sci. Manuf. 30, 1055–1071 (1999)CrossRef
17.
go back to reference Hill, M.: Chapter 3. Microwave Theory and Background, pp. 56–79 (1993) Hill, M.: Chapter 3. Microwave Theory and Background, pp. 56–79 (1993)
18.
go back to reference Stuerga, D.: Microwave-Material Interactions and Dielectric Properties, Key Ingredients for Mastery of Chemical Microwave Processes, vol. 1 (2008) Stuerga, D.: Microwave-Material Interactions and Dielectric Properties, Key Ingredients for Mastery of Chemical Microwave Processes, vol. 1 (2008)
19.
go back to reference Sun, J., Wang, W., Yue, Q.: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials (Basel) 9(4) (2016)CrossRef Sun, J., Wang, W., Yue, Q.: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials (Basel) 9(4) (2016)CrossRef
20.
go back to reference Chandrasekaran, S., Ramanathan, S., Basak, T.: Microwave food processing—a review. Frin 52(1), 243–261 (2013) Chandrasekaran, S., Ramanathan, S., Basak, T.: Microwave food processing—a review. Frin 52(1), 243–261 (2013)
21.
go back to reference Menéndez, J.A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E.G., Bermúdez, J.M.: Microwave heating processes involving carbon materials. Fuel Process. Technol. J. 91(1), 1–8 (2010)CrossRef Menéndez, J.A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E.G., Bermúdez, J.M.: Microwave heating processes involving carbon materials. Fuel Process. Technol. J. 91(1), 1–8 (2010)CrossRef
22.
go back to reference Stuerga, D.: Fundamental aspects of microwave irradiation in organic chemistry. Microwaves Org. Synth. 1–56 (2012) Stuerga, D.: Fundamental aspects of microwave irradiation in organic chemistry. Microwaves Org. Synth. 1–56 (2012)
23.
go back to reference Suits, B.H.: Nuclear quadrupole resonance spectroscopy (Chapter 2). In: Vij, D.R. (ed.) Handbook of Applied Solid State Spectroscopy, pp. 65–96. Springer US, Boston, MA (2006) Suits, B.H.: Nuclear quadrupole resonance spectroscopy (Chapter 2). In: Vij, D.R. (ed.) Handbook of Applied Solid State Spectroscopy, pp. 65–96. Springer US, Boston, MA (2006)
24.
25.
go back to reference Sutton, W.: Microwave processing of ceramics - An overview. MRS Proc. 269, 3–19 (1992) Sutton, W.: Microwave processing of ceramics - An overview. MRS Proc. 269, 3–19 (1992)
26.
go back to reference Brandon, J., Samuels, J., Hodgkins, W.: Microwave sintering of oxide ceramics. MRS Proc. 269, 237–244 (1992) Brandon, J., Samuels, J., Hodgkins, W.: Microwave sintering of oxide ceramics. MRS Proc. 269, 237–244 (1992)
27.
go back to reference Singh, B., Devi, N., Mathur, L., Singh, R.K., Bhardwaj, A., Song, S.J., Henkensmeier, D.: Fabrication of dense Ce0.9Mg0.1P2O7-PmOn composites by microwave heating for application as electrolyte in intermediate-temperature fuel cells. Ceram. Int. 44(6), 6170–6175 (2018) Singh, B., Devi, N., Mathur, L., Singh, R.K., Bhardwaj, A., Song, S.J., Henkensmeier, D.: Fabrication of dense Ce0.9Mg0.1P2O7-PmOn composites by microwave heating for application as electrolyte in intermediate-temperature fuel cells. Ceram. Int. 44(6), 6170–6175 (2018)
28.
go back to reference Janney, M.A., Kimrey, H.D.: Diffusion-controlled processes in microwave-fired oxide ceramics. MRS Proc. Microw. Process. Mater. II 189, 215–227 (1991) Janney, M.A., Kimrey, H.D.: Diffusion-controlled processes in microwave-fired oxide ceramics. MRS Proc. Microw. Process. Mater. II 189, 215–227 (1991)
29.
go back to reference Agrawal, D.K.: Microwave processing of ceramics. Curr. Opin. Solid State Mater. Sci. 3(5), 480–485 (1998)CrossRef Agrawal, D.K.: Microwave processing of ceramics. Curr. Opin. Solid State Mater. Sci. 3(5), 480–485 (1998)CrossRef
30.
go back to reference Morell, J.I., Economou, D.J., Amundson, N.R.: Pulsed-power volume-heating chemical vapor infiltration. J. Mater. Res. 7(9), 2447–2457 (1992)CrossRef Morell, J.I., Economou, D.J., Amundson, N.R.: Pulsed-power volume-heating chemical vapor infiltration. J. Mater. Res. 7(9), 2447–2457 (1992)CrossRef
31.
go back to reference Ting, J.M., Lagounov, A.G., Lake, M.L.: Chemical vapour infiltration of diamond into a porous carbon. J. Mater. Sci. Lett. 15(4), 350–352 (1996)CrossRef Ting, J.M., Lagounov, A.G., Lake, M.L.: Chemical vapour infiltration of diamond into a porous carbon. J. Mater. Sci. Lett. 15(4), 350–352 (1996)CrossRef
32.
go back to reference Kranbuehl, D., Delos, S., Yi, E., Mayer, J., Jarvie, T., Winfree, W., Hou, T.: Dynamic dielectric analysis: nondestructive material evaluation and cure cycle monitoring. Polym. Eng. Sci. 26(5), 338–345 (1986)CrossRef Kranbuehl, D., Delos, S., Yi, E., Mayer, J., Jarvie, T., Winfree, W., Hou, T.: Dynamic dielectric analysis: nondestructive material evaluation and cure cycle monitoring. Polym. Eng. Sci. 26(5), 338–345 (1986)CrossRef
33.
go back to reference Mijović, J., Kenny, J.M., Maffezzoli, A., Trivisano, A., Bellucci, F., Nicolais, L.: The principles of dielectric measurements for in situ monitoring of composite processing. Compos. Sci. Technol. 49(3), 277–290 (1993)CrossRef Mijović, J., Kenny, J.M., Maffezzoli, A., Trivisano, A., Bellucci, F., Nicolais, L.: The principles of dielectric measurements for in situ monitoring of composite processing. Compos. Sci. Technol. 49(3), 277–290 (1993)CrossRef
34.
go back to reference Martinelli, M., Rolla, P.A., Tombari, E.: A method for dynamic dielectric measurements at microwave frequencies: applications to polymerization process studies. IEEE Trans. Instrum. Meas. (3), 417–421 (1985)CrossRef Martinelli, M., Rolla, P.A., Tombari, E.: A method for dynamic dielectric measurements at microwave frequencies: applications to polymerization process studies. IEEE Trans. Instrum. Meas. (3), 417–421 (1985)CrossRef
35.
go back to reference Haran, E.N.: Dielectric properties of an epoxy resin during polymerization. J. Appl. Polym. Sci. 9(11), 3505–3518 (1965)CrossRef Haran, E.N.: Dielectric properties of an epoxy resin during polymerization. J. Appl. Polym. Sci. 9(11), 3505–3518 (1965)CrossRef
36.
go back to reference Chen, M., Siochi, E.J., Ward, T.C., McGrath, J.E.: Basic ideas of microwave processing of polymers. Polym. Eng. Sci. 33(17), 1092–1109 (1993)CrossRef Chen, M., Siochi, E.J., Ward, T.C., McGrath, J.E.: Basic ideas of microwave processing of polymers. Polym. Eng. Sci. 33(17), 1092–1109 (1993)CrossRef
37.
go back to reference Drzal, L.T., Hook, K.J., Agrawal, R.K.: Enhanced chemical bonding at the fibre-matrix interphase in microwave processed composites. MRS Online Proc. Libr. Arch. 189, 449–454 (1990)CrossRef Drzal, L.T., Hook, K.J., Agrawal, R.K.: Enhanced chemical bonding at the fibre-matrix interphase in microwave processed composites. MRS Online Proc. Libr. Arch. 189, 449–454 (1990)CrossRef
38.
go back to reference Lee, W.I., Springer, G.S.: Interaction of electromagnetic radiation with organic matrix composites. J. Compos. Mater. 18(4), 357–386 (1984) Lee, W.I., Springer, G.S.: Interaction of electromagnetic radiation with organic matrix composites. J. Compos. Mater. 18(4), 357–386 (1984)
39.
go back to reference Lee, W.I., Springer, G.S.: Microwave curing of composites. J. Compos. Mater. 18(4), 387–409 (1984)CrossRef Lee, W.I., Springer, G.S.: Microwave curing of composites. J. Compos. Mater. 18(4), 387–409 (1984)CrossRef
40.
go back to reference Marand, E., Baker, K.R., Graybeal, J.D.: Comparison of reaction mechanisms of epoxy resins undergoing thermal and microwave cure from in situ measurements of microwave dielectric properties and infrared spectroscopy. Macromolecules 25(8), 2243–2252 (1992)CrossRef Marand, E., Baker, K.R., Graybeal, J.D.: Comparison of reaction mechanisms of epoxy resins undergoing thermal and microwave cure from in situ measurements of microwave dielectric properties and infrared spectroscopy. Macromolecules 25(8), 2243–2252 (1992)CrossRef
41.
go back to reference Wei, J., Hawley, M.C., Delong, J.D., Demeuse, M.: Comparison of microwave and thermal cure of epoxy resins. Polym. Eng. Sci. 33(17), 1132–1140 (1993)CrossRef Wei, J., Hawley, M.C., Delong, J.D., Demeuse, M.: Comparison of microwave and thermal cure of epoxy resins. Polym. Eng. Sci. 33(17), 1132–1140 (1993)CrossRef
42.
go back to reference Jordan, C., Galy, J., Pascault, J.-P., Moré, C., Delmotte, M., Jullien, H.: Comparison of microwave and thermal cure of an epoxy/amine matrix. Polym. Eng. Sci. 35(3), 233–239 (1995)CrossRef Jordan, C., Galy, J., Pascault, J.-P., Moré, C., Delmotte, M., Jullien, H.: Comparison of microwave and thermal cure of an epoxy/amine matrix. Polym. Eng. Sci. 35(3), 233–239 (1995)CrossRef
43.
go back to reference Bai, S.L., Djafari, V., Andréani, M., François, D.: A comparative study of the mechanical behaviour of an epoxy resin cured by microwaves with one cured thermally. Eur. Polym. J. 31(9), 875–884 (1995)CrossRef Bai, S.L., Djafari, V., Andréani, M., François, D.: A comparative study of the mechanical behaviour of an epoxy resin cured by microwaves with one cured thermally. Eur. Polym. J. 31(9), 875–884 (1995)CrossRef
44.
go back to reference Bai, S.L., Djafari, V.: Interfacial properties of microwave cured composites. Compos. Mater. 4361(July), 645–651 (2014) Bai, S.L., Djafari, V.: Interfacial properties of microwave cured composites. Compos. Mater. 4361(July), 645–651 (2014)
45.
go back to reference Adegbite, V., Hawley, M., Decker, D., Sticklen, J.: Automation of microwave processing of graphite/epoxy composite materials using an expert systems technique. MRS Online Proc. Libr. Arch. Microw. Process. Mater. III 269, 425–430 (1992) Adegbite, V., Hawley, M., Decker, D., Sticklen, J.: Automation of microwave processing of graphite/epoxy composite materials using an expert systems technique. MRS Online Proc. Libr. Arch. Microw. Process. Mater. III 269, 425–430 (1992)
46.
go back to reference Kim, T., Lee, J., Lee, K.-H.: Microwave heating of carbon-based solid materials. Carbon Lett. 15(1), 15–24 (2014)CrossRef Kim, T., Lee, J., Lee, K.-H.: Microwave heating of carbon-based solid materials. Carbon Lett. 15(1), 15–24 (2014)CrossRef
47.
go back to reference Bradshaw, S.M., van Wyk, E.J., de Swardt, J.B.: Microwave heating principles and the application to the regeneration of granular activated carbon. J. South. Afr. Inst. Min. Metall. (August), 201–212 (1998) Bradshaw, S.M., van Wyk, E.J., de Swardt, J.B.: Microwave heating principles and the application to the regeneration of granular activated carbon. J. South. Afr. Inst. Min. Metall. (August), 201–212 (1998)
48.
go back to reference Rogti, F., Ferhat, M.: Maxwell-Wagner polarization and interfacial charge at the multi-layers of thermoplastic polymers. J. Electrostat. 72(1), 91–97 (2014)CrossRef Rogti, F., Ferhat, M.: Maxwell-Wagner polarization and interfacial charge at the multi-layers of thermoplastic polymers. J. Electrostat. 72(1), 91–97 (2014)CrossRef
49.
go back to reference Vu, T.T.N., Teyssedre, G., Roy, S.L., Laurent, C.: Maxwell-Wagner effect in multi-layered dielectrics: interfacial charge measurement and modelling. Technologies 5(2), 27 (2017)CrossRef Vu, T.T.N., Teyssedre, G., Roy, S.L., Laurent, C.: Maxwell-Wagner effect in multi-layered dielectrics: interfacial charge measurement and modelling. Technologies 5(2), 27 (2017)CrossRef
50.
go back to reference Gude, V.G., Patil, P., Martinez-Guerra, E., Deng, S.: Microwave energy potential for biodiesel production. Sustain. Chem. Process. 1, 1–31 (2013)CrossRef Gude, V.G., Patil, P., Martinez-Guerra, E., Deng, S.: Microwave energy potential for biodiesel production. Sustain. Chem. Process. 1, 1–31 (2013)CrossRef
51.
go back to reference Kong, Y., Cha, C.Y.: Microwave-induced regeneration of NOx-saturated char. Energy Fuels 10(6), 1245–1249 (1996)CrossRef Kong, Y., Cha, C.Y.: Microwave-induced regeneration of NOx-saturated char. Energy Fuels 10(6), 1245–1249 (1996)CrossRef
52.
go back to reference Menéndez, J.A., Menéndez, E.M., García, A., Parra, J.B., Pis, J.J.: Thermal treatment of active carbons: a comparison between microwave and electrical heating. J. Microw. Power Electromagn. Energy 34(3), 137–143 (1999)CrossRef Menéndez, J.A., Menéndez, E.M., García, A., Parra, J.B., Pis, J.J.: Thermal treatment of active carbons: a comparison between microwave and electrical heating. J. Microw. Power Electromagn. Energy 34(3), 137–143 (1999)CrossRef
53.
go back to reference Carrott, P.J., Nabais, J.M., Ribeiro Carrott, M.M., Menéndez, J.: Thermal treatments of activated carbon fibres using a microwave furnace. Microporous Mesoporous Mater. 47(2), 243–252 (2001)CrossRef Carrott, P.J., Nabais, J.M., Ribeiro Carrott, M.M., Menéndez, J.: Thermal treatments of activated carbon fibres using a microwave furnace. Microporous Mesoporous Mater. 47(2), 243–252 (2001)CrossRef
54.
go back to reference Dawei, L., Zhang, Y., Xie, Q., Yazhi, Z.: Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber. J. Environ. Sci. 21(9), 1290–1295 (2009)CrossRef Dawei, L., Zhang, Y., Xie, Q., Yazhi, Z.: Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber. J. Environ. Sci. 21(9), 1290–1295 (2009)CrossRef
55.
go back to reference Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon N. Y. 48(7), 2118–2122 (2010)CrossRef Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon N. Y. 48(7), 2118–2122 (2010)CrossRef
56.
go back to reference Yan, Q., Liu, Q., Wang, J.: A simple and fast microwave assisted approach for the reduction of graphene oxide. Ceram. Int. 42(2), 3007–3013 (2016)CrossRef Yan, Q., Liu, Q., Wang, J.: A simple and fast microwave assisted approach for the reduction of graphene oxide. Ceram. Int. 42(2), 3007–3013 (2016)CrossRef
57.
go back to reference Imholt, T.J., Dyke, C.A., Hasslacher, B., Perez, J.M., Price, D.W., Roberts, J.A., Scott, J.B., Wadhawan, A., Ye, Z., Tour, J.M.: Nanotubes in microwave fields: light emission, intense heat, outgassing, and reconstruction. Chem. Mater. 15(21), 3969–3970 (2003)CrossRef Imholt, T.J., Dyke, C.A., Hasslacher, B., Perez, J.M., Price, D.W., Roberts, J.A., Scott, J.B., Wadhawan, A., Ye, Z., Tour, J.M.: Nanotubes in microwave fields: light emission, intense heat, outgassing, and reconstruction. Chem. Mater. 15(21), 3969–3970 (2003)CrossRef
58.
go back to reference Lin, W., Moon, K., Zhang, S., Ding, Y., Shang, J., Chen, M., Wong, C.: Microwave makes carbon nanotubes less defective. ACS Nano 4(3), 1716–1722 (2010)CrossRef Lin, W., Moon, K., Zhang, S., Ding, Y., Shang, J., Chen, M., Wong, C.: Microwave makes carbon nanotubes less defective. ACS Nano 4(3), 1716–1722 (2010)CrossRef
59.
go back to reference Wang, Q., Zheng, H., Long, Y., Zhang, L., Gao, M., Bai, W.: Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon N. Y. 49(9), 3134–3140 (2011)CrossRef Wang, Q., Zheng, H., Long, Y., Zhang, L., Gao, M., Bai, W.: Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon N. Y. 49(9), 3134–3140 (2011)CrossRef
60.
go back to reference Wang, X., Tang, H., Huang, S., Zhu, L.: Fast and facile microwave-assisted synthesis of graphene oxide nanosheets. RSC Adv. 4(104), 60102–60105 (2014)CrossRef Wang, X., Tang, H., Huang, S., Zhu, L.: Fast and facile microwave-assisted synthesis of graphene oxide nanosheets. RSC Adv. 4(104), 60102–60105 (2014)CrossRef
61.
go back to reference Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y., Qiu, J.: The role of microwave absorption on formation of graphene from graphite oxide. Carbon N. Y. 50(9), 3267–3273 (2012)CrossRef Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y., Qiu, J.: The role of microwave absorption on formation of graphene from graphite oxide. Carbon N. Y. 50(9), 3267–3273 (2012)CrossRef
62.
go back to reference Jiang, F., Yu, Y., Wang, Y., Feng, A., Song, L.: A novel synthesis route of graphene via microwave assisted intercalation-exfoliation of graphite. Mater. Lett. 200, 39–42 (2017)CrossRef Jiang, F., Yu, Y., Wang, Y., Feng, A., Song, L.: A novel synthesis route of graphene via microwave assisted intercalation-exfoliation of graphite. Mater. Lett. 200, 39–42 (2017)CrossRef
63.
go back to reference Morales, G.M., Schifani, P., Ellis, G., Ballesteros, C., Martínez, G., Barbero, C., Salavagione, H.J.: High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon N. Y. 49(8), 2809–2816 (2011)CrossRef Morales, G.M., Schifani, P., Ellis, G., Ballesteros, C., Martínez, G., Barbero, C., Salavagione, H.J.: High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon N. Y. 49(8), 2809–2816 (2011)CrossRef
64.
go back to reference Kumar, D., Raghavan, C.M., Sridhar, C., Shin, J.-H., Ryu, S.H., Jang, K., Shin, D.-S.: Microwave-assisted synthesis, characterization of reduced graphene oxide, and its antibacterial activity. Bull. Korean Chem. Soc. 36(8), 2034–2038 (2015)CrossRef Kumar, D., Raghavan, C.M., Sridhar, C., Shin, J.-H., Ryu, S.H., Jang, K., Shin, D.-S.: Microwave-assisted synthesis, characterization of reduced graphene oxide, and its antibacterial activity. Bull. Korean Chem. Soc. 36(8), 2034–2038 (2015)CrossRef
65.
go back to reference Liu, T., Chai, H., Jia, D., Su, Y., Wang, T., Zhou, W.: Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochim. Acta 180, 998–1006 (2015)CrossRef Liu, T., Chai, H., Jia, D., Su, Y., Wang, T., Zhou, W.: Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochim. Acta 180, 998–1006 (2015)CrossRef
66.
go back to reference Ponnusamy, V.K., Mani, V., Chen, S.M., Huang, W.T., Jen, J.F.: Rapid microwave assisted synthesis of graphene nanosheets/polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine. Talanta 120, 148–157 (2014)CrossRef Ponnusamy, V.K., Mani, V., Chen, S.M., Huang, W.T., Jen, J.F.: Rapid microwave assisted synthesis of graphene nanosheets/polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine. Talanta 120, 148–157 (2014)CrossRef
67.
go back to reference Wang, C., Guo, R., Lan, J., Jiang, S., Zhang, Z.: Microwave-assisted synthesis of silver/reduced graphene oxide on cotton fabric. Cellulose 24(9), 4045–4055 (2017)CrossRef Wang, C., Guo, R., Lan, J., Jiang, S., Zhang, Z.: Microwave-assisted synthesis of silver/reduced graphene oxide on cotton fabric. Cellulose 24(9), 4045–4055 (2017)CrossRef
68.
go back to reference Umrao, S., Gupta, T.K., Kumar, S., Singh, V.K., Sultania, M.K., Jung, J.H., Oh, I.K., Srivastava, A.: Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band. ACS Appl. Mater. Interfaces 7(35), 19831–19842 (2015)CrossRef Umrao, S., Gupta, T.K., Kumar, S., Singh, V.K., Sultania, M.K., Jung, J.H., Oh, I.K., Srivastava, A.: Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band. ACS Appl. Mater. Interfaces 7(35), 19831–19842 (2015)CrossRef
69.
go back to reference Murugan, A.V., Muraliganth, T., Manthiram, A.: Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 22(8), 2692 (2010)CrossRef Murugan, A.V., Muraliganth, T., Manthiram, A.: Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 22(8), 2692 (2010)CrossRef
70.
go back to reference Li, L.L., Ji, J., Fei, R., Wang, C.Z., Lu, Q., Zhang, J.R., Jiang, L.P., Zhu, J.J.: A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 22(14), 2971–2979 (2012)CrossRef Li, L.L., Ji, J., Fei, R., Wang, C.Z., Lu, Q., Zhang, J.R., Jiang, L.P., Zhu, J.J.: A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv. Funct. Mater. 22(14), 2971–2979 (2012)CrossRef
71.
go back to reference Zhang, C., Cui, Y., Song, L., Liu, X., Hu, Z.: Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150, 54–60 (2016)CrossRef Zhang, C., Cui, Y., Song, L., Liu, X., Hu, Z.: Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150, 54–60 (2016)CrossRef
72.
go back to reference Amiri, A., Sadri, R., Shanbedi, M., Ahmadi, G., Kazi, S.N., Chew, B.T., Zubir, M.N.M.: Synthesis of ethylene glycol-treated graphene nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant. Energy Convers. Manag. 101, 767–777 (2015)CrossRef Amiri, A., Sadri, R., Shanbedi, M., Ahmadi, G., Kazi, S.N., Chew, B.T., Zubir, M.N.M.: Synthesis of ethylene glycol-treated graphene nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant. Energy Convers. Manag. 101, 767–777 (2015)CrossRef
73.
go back to reference Amiri, A., Shanbedi, M., Ahmadi, G., Eshghi, H., Chew, B.T., Kazi, S.N.: Microwave-assisted direct coupling of graphene nanoplatelets with poly ethylene glycol and 4-phenylazophenol molecules for preparing stable-colloidal system. Colloids Surf. A Physicochem. Eng. Asp. 487, 131–141 (2015)CrossRef Amiri, A., Shanbedi, M., Ahmadi, G., Eshghi, H., Chew, B.T., Kazi, S.N.: Microwave-assisted direct coupling of graphene nanoplatelets with poly ethylene glycol and 4-phenylazophenol molecules for preparing stable-colloidal system. Colloids Surf. A Physicochem. Eng. Asp. 487, 131–141 (2015)CrossRef
74.
go back to reference Xie, R., Wang, J., Yang, Y., Jiang, K., Li, Q., Fan, S.: Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation. Compos. Sci. Technol. 72(1), 85–90 (2011)CrossRef Xie, R., Wang, J., Yang, Y., Jiang, K., Li, Q., Fan, S.: Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation. Compos. Sci. Technol. 72(1), 85–90 (2011)CrossRef
75.
go back to reference Wang, H., Feng, J., Hu, X., Ng, K.M.: The formation of hollow poly(methyl methacrylate)/multiwalled carbon nanotube nanocomposite cylinders by microwave irradiation. Nanotechnology 20(9) (2009)CrossRef Wang, H., Feng, J., Hu, X., Ng, K.M.: The formation of hollow poly(methyl methacrylate)/multiwalled carbon nanotube nanocomposite cylinders by microwave irradiation. Nanotechnology 20(9) (2009)CrossRef
76.
go back to reference Park, S.-H., Kim, H.-K., Roh, K.C., Kim, K.-B.: Co3O4-reduced graphene oxide nanocomposite synthesized by microwave-assisted hydrothermal process for Li-ion batteries. Electron. Mater. Lett. 11(2), 282–287 (2015)CrossRef Park, S.-H., Kim, H.-K., Roh, K.C., Kim, K.-B.: Co3O4-reduced graphene oxide nanocomposite synthesized by microwave-assisted hydrothermal process for Li-ion batteries. Electron. Mater. Lett. 11(2), 282–287 (2015)CrossRef
77.
go back to reference Siamaki, A.R., Khder, A.E.R.S., Abdelsayed, V., El-Shall, M.S., Gupton, B.F.: Microwave-assisted synthesis of palladium nanoparticles supported on graphene: a highly active and recyclable catalyst for carbon-carbon cross-coupling reactions. J. Catal. 279(1), 1–11 (2011)CrossRef Siamaki, A.R., Khder, A.E.R.S., Abdelsayed, V., El-Shall, M.S., Gupton, B.F.: Microwave-assisted synthesis of palladium nanoparticles supported on graphene: a highly active and recyclable catalyst for carbon-carbon cross-coupling reactions. J. Catal. 279(1), 1–11 (2011)CrossRef
78.
go back to reference Chen, Y., Huang, Z., Zhang, H., Chen, Y., Cheng, Z., Zhong, Y., Ye, Y., Lei, X.: Synthesis of the graphene/nickel oxide composite and its electrochemical performance for supercapacitors. Int. J. Hydrogen Energy 39(28), 16171–16178 (2014)CrossRef Chen, Y., Huang, Z., Zhang, H., Chen, Y., Cheng, Z., Zhong, Y., Ye, Y., Lei, X.: Synthesis of the graphene/nickel oxide composite and its electrochemical performance for supercapacitors. Int. J. Hydrogen Energy 39(28), 16171–16178 (2014)CrossRef
79.
go back to reference Liao, C.S., Liao, C.T., Tso, C.Y., Shy, H.J.: Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites. Mater. Chem. Phys. 130(1–2), 270–274 (2011)CrossRef Liao, C.S., Liao, C.T., Tso, C.Y., Shy, H.J.: Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites. Mater. Chem. Phys. 130(1–2), 270–274 (2011)CrossRef
80.
go back to reference Li, N., Tang, S., Pan, Y., Meng, X.: One-step and rapid synthesis of reduced graphene oxide supported Pt nanodendrites by a microwave-assisted simultaneous reduction. Mater. Res. Bull. 49(1), 119–125 (2014)CrossRef Li, N., Tang, S., Pan, Y., Meng, X.: One-step and rapid synthesis of reduced graphene oxide supported Pt nanodendrites by a microwave-assisted simultaneous reduction. Mater. Res. Bull. 49(1), 119–125 (2014)CrossRef
81.
go back to reference Zhou, X., Zhang, J., Su, Q., Shi, J., Liu, Y., Du, G.: Nanoleaf-on-sheet CuO/graphene composites: microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries. Electrochim. Acta 125, 615–621 (2014)CrossRef Zhou, X., Zhang, J., Su, Q., Shi, J., Liu, Y., Du, G.: Nanoleaf-on-sheet CuO/graphene composites: microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries. Electrochim. Acta 125, 615–621 (2014)CrossRef
82.
go back to reference Amiri, A., Shanbedi, M., Ahmadi, G., Eshghi, H., Kazi, S.N., Chew, B.T., Savari, M., Zubir, M.N.M.: Mass production of highly-porous graphene for high-performance supercapacitors. Sci. Rep. 6(Sept), 1–11 (2016) Amiri, A., Shanbedi, M., Ahmadi, G., Eshghi, H., Kazi, S.N., Chew, B.T., Savari, M., Zubir, M.N.M.: Mass production of highly-porous graphene for high-performance supercapacitors. Sci. Rep. 6(Sept), 1–11 (2016)
83.
go back to reference Li, Q., Yi, Z., Cheng, Y., Wang, X.X., Yin, D., Wang, L.: Microwave-assisted synthesis of the sandwich-like porous Al2O3/rGO nanosheets anchoring NiO nanocomposite as anode materials for lithium-ion batteries. Appl. Surf. Sci. 427, 354–362 (2018)CrossRef Li, Q., Yi, Z., Cheng, Y., Wang, X.X., Yin, D., Wang, L.: Microwave-assisted synthesis of the sandwich-like porous Al2O3/rGO nanosheets anchoring NiO nanocomposite as anode materials for lithium-ion batteries. Appl. Surf. Sci. 427, 354–362 (2018)CrossRef
84.
go back to reference Kumar, R., da Silva, E.T.S.G., Singh, R.K., Savu, R., Alaferdov, A.V., Fonseca, L.C., Carossi, L.C., Singh, A., Khandka, S., Kar, K.K., Alves, O.L., Kubota, L.T., Moshkalev, S.A.: Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells. J. Colloid Interface Sci. 515, 160–171 (2018)CrossRef Kumar, R., da Silva, E.T.S.G., Singh, R.K., Savu, R., Alaferdov, A.V., Fonseca, L.C., Carossi, L.C., Singh, A., Khandka, S., Kar, K.K., Alves, O.L., Kubota, L.T., Moshkalev, S.A.: Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells. J. Colloid Interface Sci. 515, 160–171 (2018)CrossRef
85.
go back to reference Voiry, D., Yang, J., Kupferberg, J., Fullon, R., Lee, C., Jeong, H.Y., Shin, H.S., Chhowalla, M.: High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353(6306), 1413–1416 (2016)CrossRef Voiry, D., Yang, J., Kupferberg, J., Fullon, R., Lee, C., Jeong, H.Y., Shin, H.S., Chhowalla, M.: High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353(6306), 1413–1416 (2016)CrossRef
86.
go back to reference Chen, W., Yan, L., Bangal, P.R.: Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon N. Y. 48(4), 1146–1152 (2010)CrossRef Chen, W., Yan, L., Bangal, P.R.: Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon N. Y. 48(4), 1146–1152 (2010)CrossRef
87.
go back to reference Yuan, X., Wu, Z., Zhong, H., Wang, H., Chen, X., Leng, L., Jiang, L., Xiao, Z., Zeng, G.: Fast removal of tetracycline from wastewater by reduced graphene oxide prepared via microwave-assisted ethylenediamine–N, N′–disuccinic acid induction method. Environ. Sci. Pollut. Res. 23(18), 18657–18671 (2016)CrossRef Yuan, X., Wu, Z., Zhong, H., Wang, H., Chen, X., Leng, L., Jiang, L., Xiao, Z., Zeng, G.: Fast removal of tetracycline from wastewater by reduced graphene oxide prepared via microwave-assisted ethylenediamine–N, N′–disuccinic acid induction method. Environ. Sci. Pollut. Res. 23(18), 18657–18671 (2016)CrossRef
88.
go back to reference Leng, X., Xiong, X., Zou, J.P.: Rapid microwave irradiation fast preparation and characterization of few-layer graphenes. Trans. Nonferrous Met. Soc. China 24(1), 177–183 (2014)CrossRef Leng, X., Xiong, X., Zou, J.P.: Rapid microwave irradiation fast preparation and characterization of few-layer graphenes. Trans. Nonferrous Met. Soc. China 24(1), 177–183 (2014)CrossRef
89.
go back to reference Melucci, M., Treossi, E., Ortolani, L., Giambastiani, G., Morandi, V., Klar, P., Casiraghi, C., Samorì, P., Palermo, V.: Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. J. Mater. Chem. 20(41), 9052–9060 (2010)CrossRef Melucci, M., Treossi, E., Ortolani, L., Giambastiani, G., Morandi, V., Klar, P., Casiraghi, C., Samorì, P., Palermo, V.: Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. J. Mater. Chem. 20(41), 9052–9060 (2010)CrossRef
90.
go back to reference Sulleiro, M.V., Quiroga, S., Peña, D., Pérez, D., Guitián, E., Criado, A., Prato, M.: Microwave-induced covalent functionalization of few-layer graphene with arynes under solvent-free conditions. Chem. Commun. 54(17), 2086–2089 (2018)CrossRef Sulleiro, M.V., Quiroga, S., Peña, D., Pérez, D., Guitián, E., Criado, A., Prato, M.: Microwave-induced covalent functionalization of few-layer graphene with arynes under solvent-free conditions. Chem. Commun. 54(17), 2086–2089 (2018)CrossRef
91.
go back to reference Achary, L.S.K., Kumar, A., Rout, L., Kunapuli, S.V.S., Dhaka, R.S., Dash, P.: Phosphate functionalized graphene oxide with enhanced catalytic activity for Biginelli type reaction under microwave condition. Chem. Eng. J. 2018(331), 300–310 (2017) Achary, L.S.K., Kumar, A., Rout, L., Kunapuli, S.V.S., Dhaka, R.S., Dash, P.: Phosphate functionalized graphene oxide with enhanced catalytic activity for Biginelli type reaction under microwave condition. Chem. Eng. J. 2018(331), 300–310 (2017)
92.
go back to reference Huang, Z., Zhang, H., Chen, Y., Wang, W., Chen, Y., Zhong, Y.: Microwave-assisted synthesis of functionalized graphene on Ni foam as electrodes for supercapacitor application. Electrochim. Acta 108, 421–428 (2013)CrossRef Huang, Z., Zhang, H., Chen, Y., Wang, W., Chen, Y., Zhong, Y.: Microwave-assisted synthesis of functionalized graphene on Ni foam as electrodes for supercapacitor application. Electrochim. Acta 108, 421–428 (2013)CrossRef
93.
go back to reference Hu, H., Wang, X., Wang, J., Liu, F., Zhang, M., Xu, C.: Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl. Surf. Sci. 257(7), 2637–2642 (2011)CrossRef Hu, H., Wang, X., Wang, J., Liu, F., Zhang, M., Xu, C.: Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl. Surf. Sci. 257(7), 2637–2642 (2011)CrossRef
94.
go back to reference Yan, J., Wei, T., Qiao, W., Shao, B., Zhao, Q., Zhang, L., Fan, Z.: Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 55(23), 6973–6978 (2010)CrossRef Yan, J., Wei, T., Qiao, W., Shao, B., Zhao, Q., Zhang, L., Fan, Z.: Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 55(23), 6973–6978 (2010)CrossRef
95.
go back to reference Zito, C.A., Perfecto, T.M., Fonseca, C.S., Volanti, D.P.: Effective reduced graphene oxide sheets/hierarchical flower-like NiO composites for methanol sensing under high humidity. New J. Chem. 42(11), 8638–8645 (2018)CrossRef Zito, C.A., Perfecto, T.M., Fonseca, C.S., Volanti, D.P.: Effective reduced graphene oxide sheets/hierarchical flower-like NiO composites for methanol sensing under high humidity. New J. Chem. 42(11), 8638–8645 (2018)CrossRef
96.
go back to reference Ragavan, K.V., Rastogi, N.K.: Graphene-copper oxide nanocomposite with intrinsic peroxidase activity for enhancement of chemiluminescence signals and its application for detection of Bisphenol-A. Sens. Actuators, B Chem. 229, 570–580 (2016)CrossRef Ragavan, K.V., Rastogi, N.K.: Graphene-copper oxide nanocomposite with intrinsic peroxidase activity for enhancement of chemiluminescence signals and its application for detection of Bisphenol-A. Sens. Actuators, B Chem. 229, 570–580 (2016)CrossRef
97.
go back to reference Tian, Y., Liu, Y., Wang, W.P., Zhang, X., Peng, W.: CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. Electrochim. Acta 156, 244–251 (2015)CrossRef Tian, Y., Liu, Y., Wang, W.P., Zhang, X., Peng, W.: CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. Electrochim. Acta 156, 244–251 (2015)CrossRef
98.
go back to reference Wang, Z., Xiao, Y., Cui, X., Cheng, P., Wang, B., Gao, Y., Li, X., Yang, T., Zhang, T., Lu, G.: Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide. ACS Appl. Mater. Interfaces 6(6), 3888–3895 (2014)CrossRef Wang, Z., Xiao, Y., Cui, X., Cheng, P., Wang, B., Gao, Y., Li, X., Yang, T., Zhang, T., Lu, G.: Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide. ACS Appl. Mater. Interfaces 6(6), 3888–3895 (2014)CrossRef
99.
go back to reference Zhou, X., Shi, J., Liu, Y., Su, Q., Zhang, J., Du, G.: Microwave-assisted synthesis of hollow CuO-Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J. Alloys Compd. 615, 390–394 (2014)CrossRef Zhou, X., Shi, J., Liu, Y., Su, Q., Zhang, J., Du, G.: Microwave-assisted synthesis of hollow CuO-Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J. Alloys Compd. 615, 390–394 (2014)CrossRef
100.
go back to reference Zheng, J., Zhang, W., Lin, Z., Wei, C., Yang, W., Dong, P., Yan, Y., Hu, S.: Microwave synthesis of 3D rambutan-like CuO and CuO/reduced graphene oxide modified electrodes for non-enzymatic glucose detection. J. Mater. Chem. B 4(7), 1247–1253 (2016)CrossRef Zheng, J., Zhang, W., Lin, Z., Wei, C., Yang, W., Dong, P., Yan, Y., Hu, S.: Microwave synthesis of 3D rambutan-like CuO and CuO/reduced graphene oxide modified electrodes for non-enzymatic glucose detection. J. Mater. Chem. B 4(7), 1247–1253 (2016)CrossRef
101.
go back to reference Zhang, L., Hai, X., Xia, C., Chen, X.W., Wang, J.H.: Growth of CuO nanoneedles on graphene quantum dots as peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose. Sens. Actuators, B Chem. 248, 374–384 (2017)CrossRef Zhang, L., Hai, X., Xia, C., Chen, X.W., Wang, J.H.: Growth of CuO nanoneedles on graphene quantum dots as peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose. Sens. Actuators, B Chem. 248, 374–384 (2017)CrossRef
102.
go back to reference Zhang, Y., Chang, G., Liu, S., Tian, J., Wang, L., Lu, W., Qin, X., Sun, X.: Microwave-assisted, environmentally friendly, one-pot preparation of Pd nanoparticles/graphene nanocomposites and their application in electrocatalytic oxidation of methanol. Catal. Sci. Technol. 1(9), 1636–1640 (2011)CrossRef Zhang, Y., Chang, G., Liu, S., Tian, J., Wang, L., Lu, W., Qin, X., Sun, X.: Microwave-assisted, environmentally friendly, one-pot preparation of Pd nanoparticles/graphene nanocomposites and their application in electrocatalytic oxidation of methanol. Catal. Sci. Technol. 1(9), 1636–1640 (2011)CrossRef
103.
go back to reference Shi, M., Liu, W., Zhao, D., Chu, Y., Ma, C.: Synthesis of palladium nanoparticles supported on reduced graphene oxide-tungsten carbide composite and the investigation of its performance for electrooxidation of formic acid. J. Solid State Electrochem. 18(7), 1923–1932 (2014)CrossRef Shi, M., Liu, W., Zhao, D., Chu, Y., Ma, C.: Synthesis of palladium nanoparticles supported on reduced graphene oxide-tungsten carbide composite and the investigation of its performance for electrooxidation of formic acid. J. Solid State Electrochem. 18(7), 1923–1932 (2014)CrossRef
104.
go back to reference Zhang, J.X., Yang, X.L., Shao, H.F., Tseng, C.C., Wang, D.S., Tian, S.S., Hu, W.J., Jing, C., Tian, J.N., Zhao, Y.C.: Microwave-assisted synthesis of Pd oxide-rich Pd particles on nitrogen/sulfur Co-doped graphene with remarkably enhanced ethanol electrooxidation. Fuel Cells 17(1), 115–122 (2017)CrossRef Zhang, J.X., Yang, X.L., Shao, H.F., Tseng, C.C., Wang, D.S., Tian, S.S., Hu, W.J., Jing, C., Tian, J.N., Zhao, Y.C.: Microwave-assisted synthesis of Pd oxide-rich Pd particles on nitrogen/sulfur Co-doped graphene with remarkably enhanced ethanol electrooxidation. Fuel Cells 17(1), 115–122 (2017)CrossRef
105.
go back to reference Ju, K.J., Liu, L., Feng, J.J., Zhang, Q.L., Wei, J., Wang, A.J.: Bio-directed one-pot synthesis of Pt-Pd alloyed nanoflowers supported on reduced graphene oxide with enhanced catalytic activity for ethylene glycol oxidation. Electrochim. Acta 188, 696–703 (2016)CrossRef Ju, K.J., Liu, L., Feng, J.J., Zhang, Q.L., Wei, J., Wang, A.J.: Bio-directed one-pot synthesis of Pt-Pd alloyed nanoflowers supported on reduced graphene oxide with enhanced catalytic activity for ethylene glycol oxidation. Electrochim. Acta 188, 696–703 (2016)CrossRef
106.
go back to reference Goswami, A., Rathi, A.K., Aparicio, C., Tomanec, O., Petr, M., Pocklanova, R., Gawande, M.B., Varma, R.S., Zboril, R.: In situ generation of Pd-Pt core-shell nanoparticles on reduced graphene oxide (Pd@ Pt/rGO) using microwaves: applications in dehalogenation reactions and reduction of olefins. ACS Appl. Mater. Interfaces 9(3), 2815–2824 (2017)CrossRef Goswami, A., Rathi, A.K., Aparicio, C., Tomanec, O., Petr, M., Pocklanova, R., Gawande, M.B., Varma, R.S., Zboril, R.: In situ generation of Pd-Pt core-shell nanoparticles on reduced graphene oxide (Pd@ Pt/rGO) using microwaves: applications in dehalogenation reactions and reduction of olefins. ACS Appl. Mater. Interfaces 9(3), 2815–2824 (2017)CrossRef
107.
go back to reference Sharma, S., Ganguly, A., Papakonstantinou, P., Miao, X., Li, M., Hutchison, J.L., Delichatsios, M., Ukleja, S.: Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J. Phys. Chem. C 114(45), 19459–19466 (2010)CrossRef Sharma, S., Ganguly, A., Papakonstantinou, P., Miao, X., Li, M., Hutchison, J.L., Delichatsios, M., Ukleja, S.: Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J. Phys. Chem. C 114(45), 19459–19466 (2010)CrossRef
108.
go back to reference Chu, Y.-Q., Liu, W.-M., Ma, C.-A., Shi, M.-Q., Zhao, D.: Special microwave-assisted one-pot synthesis of low loading Pt–Ru alloy nanoparticles on reduced graphene oxide for methanol oxidation. Micro Nano Lett. 9(1), 50–54 (2014)CrossRef Chu, Y.-Q., Liu, W.-M., Ma, C.-A., Shi, M.-Q., Zhao, D.: Special microwave-assisted one-pot synthesis of low loading Pt–Ru alloy nanoparticles on reduced graphene oxide for methanol oxidation. Micro Nano Lett. 9(1), 50–54 (2014)CrossRef
109.
go back to reference Xie, J.: Microwave synthesis of reduced graphene oxide-supported platinum nanocomposite with high electrocatalytic activity for methanol oxidation. Int. J. Electrochem. Sci. 12, 466–474 (2017)CrossRef Xie, J.: Microwave synthesis of reduced graphene oxide-supported platinum nanocomposite with high electrocatalytic activity for methanol oxidation. Int. J. Electrochem. Sci. 12, 466–474 (2017)CrossRef
110.
go back to reference Liu, S., Tian, J., Wang, L., Sun, X.: Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection. J. Nanopart. Res. 13(10), 4539–4548 (2011)CrossRef Liu, S., Tian, J., Wang, L., Sun, X.: Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection. J. Nanopart. Res. 13(10), 4539–4548 (2011)CrossRef
111.
go back to reference Li, Q., Hai, P.: Rapid microwave-assisted synthesis of silver decorated-reduced graphene oxide nanoparticles with enhanced photocatalytic activity under visible light. Mater. Sci. Semicond. Process. 22(1), 16–20 (2014)CrossRef Li, Q., Hai, P.: Rapid microwave-assisted synthesis of silver decorated-reduced graphene oxide nanoparticles with enhanced photocatalytic activity under visible light. Mater. Sci. Semicond. Process. 22(1), 16–20 (2014)CrossRef
112.
go back to reference Hsu, K., Chen, D.: Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity. Nanoscale Res. Lett. 9, 193 (2014)CrossRef Hsu, K., Chen, D.: Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity. Nanoscale Res. Lett. 9, 193 (2014)CrossRef
113.
go back to reference Meng, A., Shao, J., Fan, X., Wang, J., Li, Z.: Rapid synthesis of a flower-like ZnO/rGO/Ag micro/nano-composite with enhanced photocatalytic performance by a one-step microwave method. RSC Adv. 4(104), 60300–60305 (2014)CrossRef Meng, A., Shao, J., Fan, X., Wang, J., Li, Z.: Rapid synthesis of a flower-like ZnO/rGO/Ag micro/nano-composite with enhanced photocatalytic performance by a one-step microwave method. RSC Adv. 4(104), 60300–60305 (2014)CrossRef
114.
go back to reference Li, Y., Fan, B., Han, F., Yang, J., Zhang, R.: Microwave-assisted synthesis of Ag/rGO composites and their cytotoxicity for HT22 neuronal cell. Mater. Res. Innov. 21(4), 257–261 (2017)CrossRef Li, Y., Fan, B., Han, F., Yang, J., Zhang, R.: Microwave-assisted synthesis of Ag/rGO composites and their cytotoxicity for HT22 neuronal cell. Mater. Res. Innov. 21(4), 257–261 (2017)CrossRef
115.
go back to reference Mady, A.H., Baynosa, M.L., Tuma, D., Shim, J.J.: Facile microwave-assisted green synthesis of Ag-ZnFe2O4@ rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation. Appl. Catal. B Environ. 203, 416–427 (2017)CrossRef Mady, A.H., Baynosa, M.L., Tuma, D., Shim, J.J.: Facile microwave-assisted green synthesis of Ag-ZnFe2O4@ rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation. Appl. Catal. B Environ. 203, 416–427 (2017)CrossRef
116.
go back to reference Liu, X., Pan, L., Lv, T., Zhu, G., Lu, T., Sun, Z., Sun, C.: Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(VI). RSC Adv. 1(7), 1245–1249 (2011)CrossRef Liu, X., Pan, L., Lv, T., Zhu, G., Lu, T., Sun, Z., Sun, C.: Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(VI). RSC Adv. 1(7), 1245–1249 (2011)CrossRef
117.
go back to reference Kumar, K.D., Kumar, G.P., Reddy, K.S.: Rapid microwave synthesis of reduced graphene oxide-supported TiO2 nanostructures as high performance photocatalyst. Mater. Today Proc. 2(4–5), 3736–3742 (2015)CrossRef Kumar, K.D., Kumar, G.P., Reddy, K.S.: Rapid microwave synthesis of reduced graphene oxide-supported TiO2 nanostructures as high performance photocatalyst. Mater. Today Proc. 2(4–5), 3736–3742 (2015)CrossRef
118.
go back to reference Liu, X., Pan, L., Lv, T., Sun, Z.: Investigation of photocatalytic activities over ZnO-TiO2-reduced graphene oxide composites synthesized via microwave-assisted reaction. J. Colloid Interface Sci. 394(1), 441–444 (2013)CrossRef Liu, X., Pan, L., Lv, T., Sun, Z.: Investigation of photocatalytic activities over ZnO-TiO2-reduced graphene oxide composites synthesized via microwave-assisted reaction. J. Colloid Interface Sci. 394(1), 441–444 (2013)CrossRef
119.
go back to reference Ramadoss, A., Kim, S.J.: Improved activity of a graphene-TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon N. Y. 63, 434–445 (2013)CrossRef Ramadoss, A., Kim, S.J.: Improved activity of a graphene-TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon N. Y. 63, 434–445 (2013)CrossRef
120.
go back to reference Lv, T., Pan, L., Liu, X., Lu, T., Zhu, G., Sun, Z.: Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloys Compd. 509(41), 10086–10091 (2011)CrossRef Lv, T., Pan, L., Liu, X., Lu, T., Zhu, G., Sun, Z.: Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloys Compd. 509(41), 10086–10091 (2011)CrossRef
121.
go back to reference Lv, T., Pan, L., Liu, X., Sun, Z.: Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide-carbon nanotube composites synthesized via microwave-assisted reaction. Catal. Sci. Technol. 2(11), 2297–2301 (2012)CrossRef Lv, T., Pan, L., Liu, X., Sun, Z.: Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide-carbon nanotube composites synthesized via microwave-assisted reaction. Catal. Sci. Technol. 2(11), 2297–2301 (2012)CrossRef
122.
go back to reference Herring, N.P., Almahoudi, S.H., Olson, C.R., El-Shall, M.S.: Enhanced photocatalytic activity of ZnO-graphene nanocomposites prepared by microwave synthesis. J. Nanopart. Res. 14(12) (2012) Herring, N.P., Almahoudi, S.H., Olson, C.R., El-Shall, M.S.: Enhanced photocatalytic activity of ZnO-graphene nanocomposites prepared by microwave synthesis. J. Nanopart. Res. 14(12) (2012)
123.
go back to reference Liu, Y., Hu, Y., Zhou, M., Qian, H., Hu, X.: Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light. Appl. Catal. B Environ. 125, 425–431 (2012)CrossRef Liu, Y., Hu, Y., Zhou, M., Qian, H., Hu, X.: Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light. Appl. Catal. B Environ. 125, 425–431 (2012)CrossRef
124.
go back to reference Omar, F.S., Ming, H.N., Hafiz, S.M., Ngee, L.H.: Microwave synthesis of zinc oxide/reduced graphene oxide hybrid for adsorption-photocatalysis application. Int. J. Photoenergy 2014 (2014)CrossRef Omar, F.S., Ming, H.N., Hafiz, S.M., Ngee, L.H.: Microwave synthesis of zinc oxide/reduced graphene oxide hybrid for adsorption-photocatalysis application. Int. J. Photoenergy 2014 (2014)CrossRef
125.
go back to reference Kashinath, L., Namratha, K., Byrappa, K.: Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes. Appl. Surf. Sci. 357, 1849–1856 (2015)CrossRef Kashinath, L., Namratha, K., Byrappa, K.: Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes. Appl. Surf. Sci. 357, 1849–1856 (2015)CrossRef
126.
go back to reference Lellala, K., Namratha, K., Byrappa, K.: Microwave assisted synthesis and characterization of nanostructure zinc oxide-graphene oxide and photo degradation of brilliant blue. Mater. Today Proc. 3(1), 74–83 (2016)CrossRef Lellala, K., Namratha, K., Byrappa, K.: Microwave assisted synthesis and characterization of nanostructure zinc oxide-graphene oxide and photo degradation of brilliant blue. Mater. Today Proc. 3(1), 74–83 (2016)CrossRef
127.
go back to reference Firmiano, E.G.S., Cordeiro, M.A.L., Rabelo, A.C., Dalmaschio, C.J., Pinheiro, A.N., Pereira, E.C., Leite, E.R.: Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem. Commun. 48(62), 7687–7689 (2012)CrossRef Firmiano, E.G.S., Cordeiro, M.A.L., Rabelo, A.C., Dalmaschio, C.J., Pinheiro, A.N., Pereira, E.C., Leite, E.R.: Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem. Commun. 48(62), 7687–7689 (2012)CrossRef
128.
go back to reference Da Silveira Firmiano, E.G., Rabelo, A.C., Dalmaschio, C.J., Pinheiro, A.N., Pereira, E.C., Schreiner, W.H., Leite, E.R.: Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 4(6), 1–8 (2014)CrossRef Da Silveira Firmiano, E.G., Rabelo, A.C., Dalmaschio, C.J., Pinheiro, A.N., Pereira, E.C., Schreiner, W.H., Leite, E.R.: Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 4(6), 1–8 (2014)CrossRef
129.
go back to reference Qin, W., Chen, T., Pan, L., Niu, L., Hu, B., Li, D., Li, J., Sun, Z.: MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim. Acta 153, 55–61 (2015)CrossRef Qin, W., Chen, T., Pan, L., Niu, L., Hu, B., Li, D., Li, J., Sun, Z.: MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim. Acta 153, 55–61 (2015)CrossRef
130.
go back to reference Li, J., Liu, X., Pan, L., Qin, W., Chen, T., Sun, Z.: MoS2-reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Adv. 4(19), 9647–9651 (2014)CrossRef Li, J., Liu, X., Pan, L., Qin, W., Chen, T., Sun, Z.: MoS2-reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Adv. 4(19), 9647–9651 (2014)CrossRef
131.
go back to reference Liu, N., Wang, X., Xu, W., Hu, H., Liang, J., Qiu, J.: Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel 119, 163–169 (2014)CrossRef Liu, N., Wang, X., Xu, W., Hu, H., Liang, J., Qiu, J.: Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel 119, 163–169 (2014)CrossRef
132.
go back to reference Youn, D.H., Jo, C., Kim, J.Y., Lee, J., Lee, J.S.: Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries. J. Power Sources 295, 228–234 (2015)CrossRef Youn, D.H., Jo, C., Kim, J.Y., Lee, J., Lee, J.S.: Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries. J. Power Sources 295, 228–234 (2015)CrossRef
Metadata
Title
Microwave-Assisted Modification of Graphene and Its Derivatives: Synthesis, Reduction and Exfoliation
Authors
Nitika Devi
Rajesh Kumar
Rajesh K. Singh
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9057-0_12

Premium Partners