Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 1/2016

04-09-2015

Microwave dielectric properties of low-fired Li2ZrO3–ZnO composite ceramics

Authors: Jianli Ma, Zhifen Fu, Peng Liu, Xudong Tang

Published in: Journal of Materials Science: Materials in Electronics | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We fabricated the low-fired (1 − x)Li2ZrO3xZnO (0.1 ≤ x ≤ 0.5) composite ceramics doped with 3 wt% LiF by a conventional solid-state route, and investigated systematically their sintering characteristics, microstructures and microwave dielectric properties. The results showed that Li2ZrO3 and ZnO coexist in the sintered ceramics, and temperature stability of Li2ZrO3 ceramics were improved by doping ZnO. Furthermore, addition of LiF successfully reduced the sintering temperatures of Li2ZrO3–ZnO ceramics to below 950 °C. A typical sample of 0.7Li2ZrO3–0.3ZnO–3 wt% LiF with optimum dielectric properties (ɛ r  = 14.8, Q × f = 26,800 GHz, τ f  = 1 ppm/°C) were achieved at 940 °C for 4 h. Such sample was compatible with Ag electrodes, suitable for the low-temperature co-fired ceramics (LTCC) applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Makimoto, S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application (Springer, Berlin, 2001)CrossRef M. Makimoto, S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application (Springer, Berlin, 2001)CrossRef
2.
go back to reference Y. Wang, R.Z. Zuo, C. Hang et al., Low-temperature-fired ReVO4 (Re = La, Ce) microwave dielectric ceramics. J. Am. Ceram. Soc. 98, 1–4 (2015)CrossRef Y. Wang, R.Z. Zuo, C. Hang et al., Low-temperature-fired ReVO4 (Re = La, Ce) microwave dielectric ceramics. J. Am. Ceram. Soc. 98, 1–4 (2015)CrossRef
3.
go back to reference G.G. Yao, P. Liu, H.W. Zhang, Novel series of low-firing microwave dielectric ceramics: Ca5A4(VO4)6 (A2+ = Mg, Zn). J. Am. Ceram. Soc. 96, 1691–1693 (2013)CrossRef G.G. Yao, P. Liu, H.W. Zhang, Novel series of low-firing microwave dielectric ceramics: Ca5A4(VO4)6 (A2+ = Mg, Zn). J. Am. Ceram. Soc. 96, 1691–1693 (2013)CrossRef
4.
go back to reference M. Hagymási, A. Roosen, R. Karmazin et al., Constrained sintering of dielectric and ferrite LTCC tape composites. J. Eur. Ceram. Soc. 25, 2061–2064 (2005)CrossRef M. Hagymási, A. Roosen, R. Karmazin et al., Constrained sintering of dielectric and ferrite LTCC tape composites. J. Eur. Ceram. Soc. 25, 2061–2064 (2005)CrossRef
6.
go back to reference L.X. Pang, H. Liu, D. Zhou et al., Low-temperature sintering and microwave dielectric properties of Li3MO4 (M = Ta, Sb) ceramics. J. Alloys Compd. 525, 22–24 (2012)CrossRef L.X. Pang, H. Liu, D. Zhou et al., Low-temperature sintering and microwave dielectric properties of Li3MO4 (M = Ta, Sb) ceramics. J. Alloys Compd. 525, 22–24 (2012)CrossRef
7.
go back to reference S. George, M.T. Sebastian, Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A = Mg, Zn) ceramics. J. Am. Ceram. Soc. 93, 2164–2166 (2010)CrossRef S. George, M.T. Sebastian, Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A = Mg, Zn) ceramics. J. Am. Ceram. Soc. 93, 2164–2166 (2010)CrossRef
8.
go back to reference L.X. Pang, D. Zhou, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3–CuO addition. J. Am. Ceram. Soc. 93, 3614–3617 (2010)CrossRef L.X. Pang, D. Zhou, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3–CuO addition. J. Am. Ceram. Soc. 93, 3614–3617 (2010)CrossRef
9.
go back to reference J.J. Bian, Y.F. Dong, New high Q microwave dielectric ceramics with rock salt structures: (1 − x)Li2TiO3 + xMgO system (0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 30, 325–330 (2010)CrossRef J.J. Bian, Y.F. Dong, New high Q microwave dielectric ceramics with rock salt structures: (1 − x)Li2TiO3 + xMgO system (0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 30, 325–330 (2010)CrossRef
10.
go back to reference N.X. Xu, J.H. Zhou, H. Yang, Structural evolution and microwave dielectric properties of MgO–LiF co-doped Li2TiO3 ceramics for LTCC applications. Ceram. Int. 40, 15191–15198 (2014)CrossRef N.X. Xu, J.H. Zhou, H. Yang, Structural evolution and microwave dielectric properties of MgO–LiF co-doped Li2TiO3 ceramics for LTCC applications. Ceram. Int. 40, 15191–15198 (2014)CrossRef
11.
go back to reference C.L. Huang, Y.W. Tseng, J.Y. Chen, High-Q dielectric using ZnO-modified Li2TiO3 ceramics for microwave applications. J. Eur. Ceram. Soc. 32, 3287–3295 (2012)CrossRef C.L. Huang, Y.W. Tseng, J.Y. Chen, High-Q dielectric using ZnO-modified Li2TiO3 ceramics for microwave applications. J. Eur. Ceram. Soc. 32, 3287–3295 (2012)CrossRef
12.
go back to reference C.W. Liu, N.X. Wu, Y.L. Mao et al., Phase formation, microstructure and microwave dielectric properties of Li2SnO3–MO (M = Mg, Zn) ceramics. J. Electr. 32, 199–204 (2014) C.W. Liu, N.X. Wu, Y.L. Mao et al., Phase formation, microstructure and microwave dielectric properties of Li2SnO3–MO (M = Mg, Zn) ceramics. J. Electr. 32, 199–204 (2014)
13.
go back to reference Y. Li, C.L. Wu, W.Z. Huang et al., Effect of nano-Al2O3 powder additive on sintering behaviors of Alumina ceramics. J. Anhui Univ. Sci. Technol. Nat. Sci. Ed. 26, 41–44 (2006) Y. Li, C.L. Wu, W.Z. Huang et al., Effect of nano-Al2O3 powder additive on sintering behaviors of Alumina ceramics. J. Anhui Univ. Sci. Technol. Nat. Sci. Ed. 26, 41–44 (2006)
14.
go back to reference J. Liang, W.Z. Lu, J.M. Wu et al., Microwave dielectric properties of Li2TiO3 ceramics sintered at low temperatures. Mater. Sci. Eng. B 176, 99–102 (2011)CrossRef J. Liang, W.Z. Lu, J.M. Wu et al., Microwave dielectric properties of Li2TiO3 ceramics sintered at low temperatures. Mater. Sci. Eng. B 176, 99–102 (2011)CrossRef
15.
go back to reference G.H. Chen, M.Z. Hou, Y. Yang, Microwave dielectric properties of Low-fired Li2TiO3 ceramics doped with Li2O–MgO–B2O3 frit. Mater. Lett. 89, 16–18 (2012)CrossRef G.H. Chen, M.Z. Hou, Y. Yang, Microwave dielectric properties of Low-fired Li2TiO3 ceramics doped with Li2O–MgO–B2O3 frit. Mater. Lett. 89, 16–18 (2012)CrossRef
16.
go back to reference Y.Z. Hao, H. Yang, G.H. Chen et al., Microwave dielectric properties of Li2TiO3 ceramics doped with LiF for LTCC applications. J. Alloys Compd. 552, 173–179 (2013)CrossRef Y.Z. Hao, H. Yang, G.H. Chen et al., Microwave dielectric properties of Li2TiO3 ceramics doped with LiF for LTCC applications. J. Alloys Compd. 552, 173–179 (2013)CrossRef
17.
go back to reference S.F. Wang, T.C.K. Yang, W. Huebner et al., Liquid-phase sintering and chemical inhomogeneity in the BaTiO3–BaCO3–LiF system. J. Mater. Res. 15, 407–416 (2000)CrossRef S.F. Wang, T.C.K. Yang, W. Huebner et al., Liquid-phase sintering and chemical inhomogeneity in the BaTiO3–BaCO3–LiF system. J. Mater. Res. 15, 407–416 (2000)CrossRef
18.
go back to reference U. Intatha, S. Eitssayeam, K. Pengpat et al., Dielectric properties of low temperature sintered LiF doped BaFe0.5Nb0.5O3. Mater. Lett. 61, 196–200 (2007)CrossRef U. Intatha, S. Eitssayeam, K. Pengpat et al., Dielectric properties of low temperature sintered LiF doped BaFe0.5Nb0.5O3. Mater. Lett. 61, 196–200 (2007)CrossRef
19.
go back to reference M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, 2010) M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, 2010)
20.
go back to reference H. Tamura, Microwave dielectric losses caused by lattice defects. J. Eur. Ceram. Soc. 26, 1775–1780 (2006)CrossRef H. Tamura, Microwave dielectric losses caused by lattice defects. J. Eur. Ceram. Soc. 26, 1775–1780 (2006)CrossRef
21.
go back to reference B.D. Silverman, Microwave absorption in cubic strontium titanate. Phys. Rev. 15, 1921–1930 (1962)CrossRef B.D. Silverman, Microwave absorption in cubic strontium titanate. Phys. Rev. 15, 1921–1930 (1962)CrossRef
22.
go back to reference C.L. Huang, S.H. Liu, Low loss microwave dielectrics in the (Mg1−x Mn x )2TiO4 ceramics. J. Am. Ceram. Soc. 91, 3428–3430 (2008)CrossRef C.L. Huang, S.H. Liu, Low loss microwave dielectrics in the (Mg1−x Mn x )2TiO4 ceramics. J. Am. Ceram. Soc. 91, 3428–3430 (2008)CrossRef
Metadata
Title
Microwave dielectric properties of low-fired Li2ZrO3–ZnO composite ceramics
Authors
Jianli Ma
Zhifen Fu
Peng Liu
Xudong Tang
Publication date
04-09-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 1/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3744-2

Other articles of this Issue 1/2016

Journal of Materials Science: Materials in Electronics 1/2016 Go to the issue