Mikrobielle Verfahren zur Umsetzung von CO2 und CO | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

8. Mikrobielle Verfahren zur Umsetzung von CO2 und CO

Authors : Dirk Weuster-Botz, Frank Kensy, Heleen De Wever, Linsey Garcia-Gonzalez

Published in: CO2 und CO – Nachhaltige Kohlenstoffquellen für die Kreislaufwirtschaft

Publisher: Springer Berlin Heidelberg

share
SHARE

Zusammenfassung

Kohlenstoffdioxid (CO2) muss reduziert werden, um daraus Biomasse (Biokatalysatoren) und organische Moleküle herstellen zu können. Mikroorganismen verfügen über eine ganze Reihe von Möglichkeiten zur Bereitstellung von Elektronen zur CO2-Reduktion.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
2.
go back to reference Schlegel HG, Gottschalk G, von Bartha R (1961) Formation and utilization of poly-[beta]-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465 Schlegel HG, Gottschalk G, von Bartha R (1961) Formation and utilization of poly-[beta]-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465
3.
go back to reference Yu J (2018) Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J Microbiol Biotechnol 34:89 Yu J (2018) Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J Microbiol Biotechnol 34:89
4.
go back to reference Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1(2):e00103-10 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1(2):e00103-10
6.
go back to reference Chmiel H, Weuster-Botz D (2018) Bioreaktoren. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 157–229 Chmiel H, Weuster-Botz D (2018) Bioreaktoren. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 157–229
7.
go back to reference Vega JL, Holmberg VL, Clausen EC, Gaddy JL (1988) Fermentation parameters of Peptostreptococcus productus on gaseous substrates (CO, H 2/CO 2). Arch Microbiol 151:65–70 Vega JL, Holmberg VL, Clausen EC, Gaddy JL (1988) Fermentation parameters of Peptostreptococcus productus on gaseous substrates (CO, H 2/CO 2). Arch Microbiol 151:65–70
8.
go back to reference Chang I-S, Kim D-H, Kim B-H, Shin P-K, Sung H-C, Lovitt RW (1998) CO fermentation of Eubacterium limosum KIST612. J Microbiol Biotechnol 8:134–140 Chang I-S, Kim D-H, Kim B-H, Shin P-K, Sung H-C, Lovitt RW (1998) CO fermentation of Eubacterium limosum KIST612. J Microbiol Biotechnol 8:134–140
9.
go back to reference Skidmore BE, Baker RA, Banjade DR, Bray JM, Tree DR, Lewis RS (2013) Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency. Biomass Bioenergy 55:162–165 Skidmore BE, Baker RA, Banjade DR, Bray JM, Tree DR, Lewis RS (2013) Syngas fermentation to biofuels: effects of hydrogen partial pressure on hydrogenase efficiency. Biomass Bioenergy 55:162–165
10.
go back to reference Mohammadi M, Mohamed AR, Najafpour GD, Younesi H, Uzir MH (2014) Kinetic studies on fermentative production of biofuel from synthesis gas using Clostridium ljungdahlii. Sci World J 2014:910590 Mohammadi M, Mohamed AR, Najafpour GD, Younesi H, Uzir MH (2014) Kinetic studies on fermentative production of biofuel from synthesis gas using Clostridium ljungdahlii. Sci World J 2014:910590
11.
go back to reference Mayer A, Schädler T, Trunz S, Stelzer T, Weuster-Botz D (2018) Carbon monoxide conversion with Clostridium aceticum. Biotechnol Bioeng 115(11):2740–2750 Mayer A, Schädler T, Trunz S, Stelzer T, Weuster-Botz D (2018) Carbon monoxide conversion with Clostridium aceticum. Biotechnol Bioeng 115(11):2740–2750
12.
go back to reference Doll (2018) Reaktionstechnische Untersuchungen zur autotrophen Herstellung von Alkoholen mit Clostridium carboxidivorans. Dissertation, TU München Doll (2018) Reaktionstechnische Untersuchungen zur autotrophen Herstellung von Alkoholen mit Clostridium carboxidivorans. Dissertation, TU München
13.
go back to reference Takors R, WeusterBotz D (2018) Prozessmodelle. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 71–105 Takors R, WeusterBotz D (2018) Prozessmodelle. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 71–105
15.
go back to reference Demler M, Weuster-Botz D (2011) Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol Bioeng 108:470–474 Demler M, Weuster-Botz D (2011) Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol Bioeng 108:470–474
16.
go back to reference Groher A, Weuster-Botz D (2016) Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. J Biotechnol 228:82–94 Groher A, Weuster-Botz D (2016) Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. J Biotechnol 228:82–94
17.
go back to reference Groher A, Weuster-Botz D (2016) General medium for the autotrophic cultivation of acetogens. Bioproc Biosys Eng 39:1645–1650 Groher A, Weuster-Botz D (2016) General medium for the autotrophic cultivation of acetogens. Bioproc Biosys Eng 39:1645–1650
18.
go back to reference Kantzow C, Weuster-Botz D (2016) Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii. Bioproc Biosys Eng 39:1325–1330 Kantzow C, Weuster-Botz D (2016) Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii. Bioproc Biosys Eng 39:1325–1330
20.
go back to reference Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87:837–843 Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87:837–843
21.
go back to reference Denecke M, Steuernagel L (2018) Mikrobielle Abwasserreinigung. In: Takors R, Weuster-Botz D (Hrsg) Chmiel H. Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 478–488 Denecke M, Steuernagel L (2018) Mikrobielle Abwasserreinigung. In: Takors R, Weuster-Botz D (Hrsg) Chmiel H. Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 478–488
22.
go back to reference Kantzow C, Mayer A, Weuster-Botz D (2015) Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. J Biotechnol 212:11–18 Kantzow C, Mayer A, Weuster-Botz D (2015) Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. J Biotechnol 212:11–18
23.
go back to reference Richter H, Martin ME, Angenent LT (2013) A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies 6:3987–4000 Richter H, Martin ME, Angenent LT (2013) A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies 6:3987–4000
24.
go back to reference Martin ME, Richter H, Saha S, Angenent LT (2015) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113:531–539 Martin ME, Richter H, Saha S, Angenent LT (2015) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113:531–539
25.
go back to reference Doll K, Rückel A, Kämpf P, Weuster-Botz D (2018) Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioproc Biosys Eng 41:1403–1416 Doll K, Rückel A, Kämpf P, Weuster-Botz D (2018) Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. Bioproc Biosys Eng 41:1403–1416
26.
go back to reference Heijstra BD, Leang C, Juminaga A (2017) Gas fermentation: cellular engineering possibilities and scale-up. Microb Cell Fact 16:60 Heijstra BD, Leang C, Juminaga A (2017) Gas fermentation: cellular engineering possibilities and scale-up. Microb Cell Fact 16:60
27.
go back to reference Molitor B, Richter H, Martin ME, Jensen RO, Juminaga A, Mihalcea C, Angenent LT (2017) Carbon recovery by fermentation of CO-rich off gases – turning steel mills into biorefineries. Biores Technol 2015:386–396 Molitor B, Richter H, Martin ME, Jensen RO, Juminaga A, Mihalcea C, Angenent LT (2017) Carbon recovery by fermentation of CO-rich off gases – turning steel mills into biorefineries. Biores Technol 2015:386–396
28.
go back to reference Takors R, Kopf M, Mampel J, Bluemke W, Blombach B, Eikmanns B, Bengelsdorf F, Weuster-Botz D, Dürre P (2018) Using gas mixtures of CO, CO 2, and H 2 as microbial substrates: the dos and don’ts of successful technology transfer from lab to production scale. Microb Biotechnol 11:606–625 Takors R, Kopf M, Mampel J, Bluemke W, Blombach B, Eikmanns B, Bengelsdorf F, Weuster-Botz D, Dürre P (2018) Using gas mixtures of CO, CO 2, and H 2 as microbial substrates: the dos and don’ts of successful technology transfer from lab to production scale. Microb Biotechnol 11:606–625
29.
go back to reference Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis gas fermentations. Biotechnol Prog 15:834–844 Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis gas fermentations. Biotechnol Prog 15:834–844
30.
go back to reference Yasin M, Jeong Y, Park SJ, Jeong J, Lee EY, Lowitt RW, Kim BH, Lee J, Chang IS (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Biores Technol 177:361–374 Yasin M, Jeong Y, Park SJ, Jeong J, Lee EY, Lowitt RW, Kim BH, Lee J, Chang IS (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Biores Technol 177:361–374
31.
go back to reference Devarapalli M, Atiyeh HK, Phillips JR, Lewis RS, Huhnke RL (2016) Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using C. ragsdalei. Biores Technol 209:56–65 Devarapalli M, Atiyeh HK, Phillips JR, Lewis RS, Huhnke RL (2016) Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using C. ragsdalei. Biores Technol 209:56–65
32.
go back to reference Shen Y, Brauwn RC, Wen Z (2017) Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl Energy 187:585–594 Shen Y, Brauwn RC, Wen Z (2017) Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl Energy 187:585–594
33.
go back to reference Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 35:2690–2696 Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenergy 35:2690–2696
35.
go back to reference Molitor B, Richter H, Martin ME, Jensen RO, Juminaga A, Mihalcea C, Angenent LT (2016) Carbon recovery by fermentation of CO-rich off gases – turning steel mills into biorefineries. Biores Technol 215:386–396 Molitor B, Richter H, Martin ME, Jensen RO, Juminaga A, Mihalcea C, Angenent LT (2016) Carbon recovery by fermentation of CO-rich off gases – turning steel mills into biorefineries. Biores Technol 215:386–396
36.
go back to reference Klassen KT, Ackerson CMD, Clausen EC, Gaddy JL (1993) Biological conversion of coal and coal-derived synthesis gas. Fuel 72:1673–1678 Klassen KT, Ackerson CMD, Clausen EC, Gaddy JL (1993) Biological conversion of coal and coal-derived synthesis gas. Fuel 72:1673–1678
37.
go back to reference Phillips JR, Atiyeh HK, Huhnke RL (2014) Method for design of production medium for fermentation of synthesis gas to ethanol by acetogenic bacteria. Biological Eng Trans 7(3):113–128 Phillips JR, Atiyeh HK, Huhnke RL (2014) Method for design of production medium for fermentation of synthesis gas to ethanol by acetogenic bacteria. Biological Eng Trans 7(3):113–128
38.
go back to reference Ahmed A, Lewis R (2007) Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97:1080–1086 Ahmed A, Lewis R (2007) Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97:1080–1086
39.
go back to reference Voegele E (2018) Former Ineos Bio site purchased for conversion into eco-district. Biomass Magazine 15089 Voegele E (2018) Former Ineos Bio site purchased for conversion into eco-district. Biomass Magazine 15089
40.
go back to reference Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davos RW, Abbas A, Ralph P, Fennell PS, Zhao M (2018) Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. Chemsuschem 11:334–355 Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davos RW, Abbas A, Ralph P, Fennell PS, Zhao M (2018) Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. Chemsuschem 11:334–355
41.
go back to reference Posten C (2018) Fotobioreaktoren. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 188–196 Posten C (2018) Fotobioreaktoren. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 188–196
42.
go back to reference Grobbelaar JU (2009) From laboratory to commercial production: a case study of a Spirulina ( Arthrospira) facility in Musina, South Africa. J Appl Phycol 21:523–527 Grobbelaar JU (2009) From laboratory to commercial production: a case study of a Spirulina ( Arthrospira) facility in Musina, South Africa. J Appl Phycol 21:523–527
43.
go back to reference Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886 Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886
44.
go back to reference Apel AC, Pfaffinger CE, Basedahl N, Mittwollen N, Göbel J, Sauter J, Brück T, Weuster-Botz D (2017) Open thin-layer cascade reactors for saline microalgae production evaluated in a physically simulated Mediterranean summer climate. Algal Res 25:381–390 Apel AC, Pfaffinger CE, Basedahl N, Mittwollen N, Göbel J, Sauter J, Brück T, Weuster-Botz D (2017) Open thin-layer cascade reactors for saline microalgae production evaluated in a physically simulated Mediterranean summer climate. Algal Res 25:381–390
45.
go back to reference Severin TS, Apel A, Brück T, Weuster-Botz D (2018) Investigation of vertical mixing in open thin-layer cascade reactors using Computational Fluid Dynamics. Chem Eng Res Des 132:436–444 Severin TS, Apel A, Brück T, Weuster-Botz D (2018) Investigation of vertical mixing in open thin-layer cascade reactors using Computational Fluid Dynamics. Chem Eng Res Des 132:436–444
46.
go back to reference Apel A, Weuster-Botz D (2015) Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioproc Biosys Eng 38:995–1008 Apel A, Weuster-Botz D (2015) Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioproc Biosys Eng 38:995–1008
47.
go back to reference Pfaffinger CE, Schöne D, Trunz S, Löwe H, Weuster-Botz D (2016) Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algae Res 20:153–163 Pfaffinger CE, Schöne D, Trunz S, Löwe H, Weuster-Botz D (2016) Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algae Res 20:153–163
48.
go back to reference Koller A, Löwe H, Schmid V, Mundt S, Weuster-Botz D (2017) Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor. Biotechnol Bioeng 114:308–320 Koller A, Löwe H, Schmid V, Mundt S, Weuster-Botz D (2017) Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor. Biotechnol Bioeng 114:308–320
49.
go back to reference Koller A, Wolf L, Brück T, Weuster-Botz D (2018) Studies on the scale-up of biomass production with Scenedesmus sp. in flat-plate gas-lift photobioreactors. Bioproc Biosys Eng 41:213–220 Koller A, Wolf L, Brück T, Weuster-Botz D (2018) Studies on the scale-up of biomass production with Scenedesmus sp. in flat-plate gas-lift photobioreactors. Bioproc Biosys Eng 41:213–220
50.
go back to reference Koller A, Wolf L, Weuster-Botz D (2017) Reaction engineering analysis of Scenedesmus ovalternus in a flat-plate gas-lift photobioreactor. Biores Technol 225:165–174 Koller A, Wolf L, Weuster-Botz D (2017) Reaction engineering analysis of Scenedesmus ovalternus in a flat-plate gas-lift photobioreactor. Biores Technol 225:165–174
51.
go back to reference Pfaffinger CE (2017) Reaktionstechnische Untersuchungen zur Lipidherstellung mit Nannochloropsis sp. in verschiedenen Photobioreaktoren. Dissertation, TU München Pfaffinger CE (2017) Reaktionstechnische Untersuchungen zur Lipidherstellung mit Nannochloropsis sp. in verschiedenen Photobioreaktoren. Dissertation, TU München
52.
go back to reference King GM (2001) Aspects of carbon monoxide production and oxidation by marine macroalgae. Mar Ecol Prog Ser 224:69–75 King GM (2001) Aspects of carbon monoxide production and oxidation by marine macroalgae. Mar Ecol Prog Ser 224:69–75
53.
go back to reference Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sus Energ Rev 14:557–577 Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sus Energ Rev 14:557–577
54.
go back to reference Schirmer A, Rude MA, Li X, Popova E, Del Cardayre SB (2010) Microbial Biosynthesis of alkanes. Science 329(8991):559–562 Schirmer A, Rude MA, Li X, Popova E, Del Cardayre SB (2010) Microbial Biosynthesis of alkanes. Science 329(8991):559–562
56.
go back to reference Weizmann C (1919) Improvements in the bacterial fermentation of carbohydrates and in bacterial cultures for the same. Patent, GB191504845 Weizmann C (1919) Improvements in the bacterial fermentation of carbohydrates and in bacterial cultures for the same. Patent, GB191504845
57.
go back to reference Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586(15):2191–2198 Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586(15):2191–2198
61.
go back to reference Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO 2 to formate by a bacterial carbon dioxide reductase. Science 342(6164):1382–1385 Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO 2 to formate by a bacterial carbon dioxide reductase. Science 342(6164):1382–1385
62.
go back to reference Andreesen JR, Gottschalk G, Schlegel HG (1970) Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Microbiol 72:154–174 Andreesen JR, Gottschalk G, Schlegel HG (1970) Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Microbiol 72:154–174
63.
go back to reference Mechichi T, Labat M, Patel BKC, Woo THS, Thomas P, Garcia J-L (1999) Clostridium methoxybenzovorans sp. nov., a new aromatic o-demethylating homoacetogen from an olive mill wastewater treatment digester. Int J Syst Bacteriol 49:1201–1209 Mechichi T, Labat M, Patel BKC, Woo THS, Thomas P, Garcia J-L (1999) Clostridium methoxybenzovorans sp. nov., a new aromatic o-demethylating homoacetogen from an olive mill wastewater treatment digester. Int J Syst Bacteriol 49:1201–1209
64.
go back to reference Mechichi T, Labat M, Woo THS, Thomas P, Garcia J-L, Patel BKC (1998) Eubacterium aggregans sp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor. Anaerobe 4:283–291 Mechichi T, Labat M, Woo THS, Thomas P, Garcia J-L, Patel BKC (1998) Eubacterium aggregans sp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor. Anaerobe 4:283–291
65.
go back to reference Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing anaerobic bacteria. Int J Syst Bacteriol 27:355–361 Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing anaerobic bacteria. Int J Syst Bacteriol 27:355–361
66.
go back to reference Straub M, Demler M, Weuster-Botz D, Dürre P (2014) Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. J Biotechnol 178:67–72 Straub M, Demler M, Weuster-Botz D, Dürre P (2014) Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii. J Biotechnol 178:67–72
67.
go back to reference Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351 Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351
68.
go back to reference Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43:232–236 Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43:232–236
69.
go back to reference Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092 Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092
70.
go back to reference Weghoff MC, Bertsch J, Müller V (2015) A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17(3):670–677 Weghoff MC, Bertsch J, Müller V (2015) A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17(3):670–677
71.
go back to reference Huhnke RL, Lewis RS, Tanner RS (2008) Isolation and characterization of novel clostridial species, Patent, WO2008028055 A2. The Board of Regents for Oklahoma State University, Anmelder Huhnke RL, Lewis RS, Tanner RS (2008) Isolation and characterization of novel clostridial species, Patent, WO2008028055 A2. The Board of Regents for Oklahoma State University, Anmelder
72.
go back to reference Hoffmeister S, Gerdom M, Bengelsdorf FR, Linder S, Flüchter S, Öztürk H, Blümke W, May A, Fischer RJ, Bahl H (2016) Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab Eng 36:37–47 Hoffmeister S, Gerdom M, Bengelsdorf FR, Linder S, Flüchter S, Öztürk H, Blümke W, May A, Fischer RJ, Bahl H (2016) Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab Eng 36:37–47
73.
go back to reference Köpke M, Simpson S, Liew F (2012) Fermentation process for producing isopropanol using a recombinant microorganism. Patent, US20120252083 A1, Anmelder: LanzaTech New Zealand Ltd. Köpke M, Simpson S, Liew F (2012) Fermentation process for producing isopropanol using a recombinant microorganism. Patent, US20120252083 A1, Anmelder: LanzaTech New Zealand Ltd.
74.
go back to reference Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, Daniel R, Dürre P (2016) Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol 7:1036 Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, Daniel R, Dürre P (2016) Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol 7:1036
75.
go back to reference Kane MD, Breznak JA (1991) Acetonema longum gen. nov. sp. nov., an H 2/CO 2 acetogenic bacterium from the termite Pterotermes occidentis. Arch Microbiol 156:91–98 Kane MD, Breznak JA (1991) Acetonema longum gen. nov. sp. nov., an H 2/CO 2 acetogenic bacterium from the termite Pterotermes occidentis. Arch Microbiol 156:91–98
76.
go back to reference Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149:255–263 Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149:255–263
77.
go back to reference Liou JS, Blakwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091 Liou JS, Blakwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091
78.
go back to reference Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5(5):e01636-14 Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5(5):e01636-14
79.
go back to reference Grethlein AJ, Worden RM, Jain MK, Datta R (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioeng 72:58–60 Grethlein AJ, Worden RM, Jain MK, Datta R (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioeng 72:58–60
80.
go back to reference Köpke M, Liew F (2012) Production of butanol from carbon monoxide by a recombinant microorganism. Patent, WO2012053905 A1, Anmelder: LanzaTech New Zealand Ltd. Köpke M, Liew F (2012) Production of butanol from carbon monoxide by a recombinant microorganism. Patent, WO2012053905 A1, Anmelder: LanzaTech New Zealand Ltd.
81.
go back to reference Van Leeuwen BN, van der Wulp AM, Duijnstee I, van Maris AJ, Straathof AJ (2012) Fermentative production of isobutene. Appl Microbiol Biotechnol 93:1377–1387 Van Leeuwen BN, van der Wulp AM, Duijnstee I, van Maris AJ, Straathof AJ (2012) Fermentative production of isobutene. Appl Microbiol Biotechnol 93:1377–1387
82.
go back to reference Güntner B (2016) Recombinant microorganism producing alkenes from acetyl-CoA. Patent, WO2016034691A1. Syngip Bv, Anmelder Güntner B (2016) Recombinant microorganism producing alkenes from acetyl-CoA. Patent, WO2016034691A1. Syngip Bv, Anmelder
83.
go back to reference Furutani M, Uenishi A, Iwasa K, Jennewein S, Fischer R (2013) Recombinant cell and production method for isoprene. Patent, EP2913392A1. Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung, Sekisui Chemical Co Ltd, Anmelder Furutani M, Uenishi A, Iwasa K, Jennewein S, Fischer R (2013) Recombinant cell and production method for isoprene. Patent, EP2913392A1. Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung, Sekisui Chemical Co Ltd, Anmelder
84.
go back to reference Beck Z, Cervin M, Chotani G, Diner B, Fan J, Peres C, Sanford K, Scotcher M, Wells D, Whited G (2014) Recombinant anaerobic acetogenic bacteria for production of isoprene and/or industrial bio-products using synthesis gas. US20140234926A1. Goodyear Tire and Rubber Co. & Danisco US Inc., Anmelder Beck Z, Cervin M, Chotani G, Diner B, Fan J, Peres C, Sanford K, Scotcher M, Wells D, Whited G (2014) Recombinant anaerobic acetogenic bacteria for production of isoprene and/or industrial bio-products using synthesis gas. US20140234926A1. Goodyear Tire and Rubber Co. & Danisco US Inc., Anmelder
85.
go back to reference Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464 Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464
86.
go back to reference Liew F, Henstra AM, Köpke M, Winzer K, Simpson SD, Minton NP (2017) Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 40:104–114 Liew F, Henstra AM, Köpke M, Winzer K, Simpson SD, Minton NP (2017) Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 40:104–114
87.
go back to reference Huang H, Chai C, Li N, Rowe P, Minton NP, Yang S, Jiang W, Gu Y (2016) CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol 5(12):1355–1361 Huang H, Chai C, Li N, Rowe P, Minton NP, Yang S, Jiang W, Gu Y (2016) CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol 5(12):1355–1361
88.
go back to reference Nagaraju S, Davies NK, Walker DJF, Köpke M, Simpson SD (2016) Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol Biofuels 9:219 Nagaraju S, Davies NK, Walker DJF, Köpke M, Simpson SD (2016) Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol Biofuels 9:219
89.
go back to reference Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, Zengler K (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact 12:118 Nagarajan H, Sahin M, Nogales J, Latif H, Lovley DR, Ebrahim A, Zengler K (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact 12:118
90.
go back to reference Humphreys CM, Minton NP (2018) Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Curr Opin Biotechnol 50:174–181 Humphreys CM, Minton NP (2018) Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Curr Opin Biotechnol 50:174–181
91.
go back to reference Valgepea K, Loi KQ, Behrendorff JB, Lemgruber RSP, Plan M, Hodson MP, Köpke M, Nielsen LK, Marcellin E (2017) Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab Eng 41:202–211 Valgepea K, Loi KQ, Behrendorff JB, Lemgruber RSP, Plan M, Hodson MP, Köpke M, Nielsen LK, Marcellin E (2017) Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen Clostridium autoethanogenum. Metab Eng 41:202–211
92.
go back to reference Molitor B, Marcellin E, Angenent LT (2017) Overcoming the energetic limitations of syngas fermentation. Curr Opin Chem Biol 41:84–92 Molitor B, Marcellin E, Angenent LT (2017) Overcoming the energetic limitations of syngas fermentation. Curr Opin Chem Biol 41:84–92
93.
go back to reference Ganigué R, Sánchez-Paredes P, Baneras L, Colprim J (2016) Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation. Front Microbiol 7:702 Ganigué R, Sánchez-Paredes P, Baneras L, Colprim J (2016) Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation. Front Microbiol 7:702
98.
go back to reference Franke A, Clemmesen C, De Schryver P, Garcia-Gonzalez L, Miest JJ, Roth O (2017) Immunostimulatory effects of dietary poly-β-hydroxybutyrate in European sea bass postlarvae. Aquacult Res 48(12):5707–5717 Franke A, Clemmesen C, De Schryver P, Garcia-Gonzalez L, Miest JJ, Roth O (2017) Immunostimulatory effects of dietary poly-β-hydroxybutyrate in European sea bass postlarvae. Aquacult Res 48(12):5707–5717
108.
go back to reference Weuster-Botz D, Takors R (2018) Wachstumskinetik. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 45–70 Weuster-Botz D, Takors R (2018) Wachstumskinetik. In: Chmiel H, Takors R, Weuster-Botz D (Hrsg) Bioprozesstechnik. Springer & Springer Nature, Heidelberg, S 45–70
109.
go back to reference Schulte MJ, Wiltgen J, Ritter J, Mooney CB, Flickinger MC (2016) A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite. Biotechnol Bioeng 113:1913–1923 Schulte MJ, Wiltgen J, Ritter J, Mooney CB, Flickinger MC (2016) A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite. Biotechnol Bioeng 113:1913–1923
110.
go back to reference Kao CY, Chen TY, Chang YB, Chiu TW, Lin HY, Chen CD, Chang JS, Lin CS (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493 Kao CY, Chen TY, Chang YB, Chiu TW, Lin HY, Chen CD, Chang JS, Lin CS (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493
Metadata
Title
Mikrobielle Verfahren zur Umsetzung von CO2 und CO
Authors
Dirk Weuster-Botz
Frank Kensy
Heleen De Wever
Linsey Garcia-Gonzalez
Copyright Year
2020
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-60649-0_8

Premium Partner