Skip to main content
Top
Published in: Archive of Applied Mechanics 12/2021

17-10-2021 | Technical notes

Miniaturized but efficient cantilever beam vibration energy harvesters for wireless bridge health monitoring applications

Authors: Kannan Solai, Meera Chandrasekaran, Joseph Daniel Rathnasami

Published in: Archive of Applied Mechanics | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless transmission of sensor node signal at minimum power consumption and on-site charging of batteries is the key to the success of Wireless Structural Health Monitoring (WSHM) technology. In structures like bridges, vibration-based piezoelectric energy harvesters are generally employed to convert the ambient vibrations available in the bridges into usable electrical energy. Achieving a lower resonance frequency in a compact micromachined structure is the main goal of this work. It is attempted by optimizing various parameters, including the choice of piezoelectric material used, harvester structural configuration, and conditioning of the output of the energy harvesting circuitry. The authors propose to maximize the induced stress and therefore harvested power by proposing a sectioned cantilever with gradually decreasing widths. Such a design analyzed using the analytical model developed in this work and industrial standard MEMS design tools show that two section beams employed harvesters induce more power and it is 22.8% higher than the power induced in conventional uniform section cantilever beam harvesters. With three sections it is found that it can be further improved by 42.47%. This significant improvement without compromising miniaturization is the key contribution of this work.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F.N. Catbas (2009) Structural health monitoring: applications and data analysis’, Structural Health Monitoring of Civil Infrastructure Systems, Elsevier: Woodhead Publishing, 1-39 F.N. Catbas (2009) Structural health monitoring: applications and data analysis’, Structural Health Monitoring of Civil Infrastructure Systems, Elsevier: Woodhead Publishing, 1-39
2.
go back to reference Rodenas-Herráiz, David, Soga, Kenichi, Fidler, Paul R A., de Battista, Nicholas: Wireless sensor networks for civil infrastructure monitoring: a best practice guide. ICE Publishing, London (2016) Rodenas-Herráiz, David, Soga, Kenichi, Fidler, Paul R A., de Battista, Nicholas: Wireless sensor networks for civil infrastructure monitoring: a best practice guide. ICE Publishing, London (2016)
4.
go back to reference Roundy, Shad, Wright, Paul K., Rabaey, Jan: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2611, 1131–1144 (2003)CrossRef Roundy, Shad, Wright, Paul K., Rabaey, Jan: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2611, 1131–1144 (2003)CrossRef
5.
go back to reference Roundy, Shad, Leland, Eli S., Baker, Jessy, Carleton, Eric, Reilly, Elizabeth, Lai, Elaine, Otis, Brian, Rabaey, Jan M., Wright, Pal K., Sundararajan, V.: Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 4, 28–36 (2005)CrossRef Roundy, Shad, Leland, Eli S., Baker, Jessy, Carleton, Eric, Reilly, Elizabeth, Lai, Elaine, Otis, Brian, Rabaey, Jan M., Wright, Pal K., Sundararajan, V.: Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 4, 28–36 (2005)CrossRef
6.
go back to reference Panigrahi, Smruti R., Bernard, Brian P., Feeny, Brian F., Mann, Brian P., Diaz, Alejandro R.: Snap-through twinkling energy generation through frequency up-conversion’. J. Sound Vib. 399, 216–227 (2017)CrossRef Panigrahi, Smruti R., Bernard, Brian P., Feeny, Brian F., Mann, Brian P., Diaz, Alejandro R.: Snap-through twinkling energy generation through frequency up-conversion’. J. Sound Vib. 399, 216–227 (2017)CrossRef
7.
go back to reference Yi, Jeong Woo, Shih, Wan Y., Shih, Wei-Heng.: Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J. Appl. Phys. 91, 1680 (2002)CrossRef Yi, Jeong Woo, Shih, Wan Y., Shih, Wei-Heng.: Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J. Appl. Phys. 91, 1680 (2002)CrossRef
8.
go back to reference Li, Huidong, Chuan Tian, Z., Deng, Daniel: Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 1, 041301 (2014)CrossRef Li, Huidong, Chuan Tian, Z., Deng, Daniel: Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 1, 041301 (2014)CrossRef
9.
go back to reference Choi, C.-H., Seo, I.-T., Song, D., Jang, M.-S., Kim, B.-Y., Nahm, S., Sung, T.-H., Song, H.-C.: Relation between piezoelectric properties of ceramics and output power density of energy harvester. J. Eur. Ceram. Soc. 33, 1343–1347 (2013)CrossRef Choi, C.-H., Seo, I.-T., Song, D., Jang, M.-S., Kim, B.-Y., Nahm, S., Sung, T.-H., Song, H.-C.: Relation between piezoelectric properties of ceramics and output power density of energy harvester. J. Eur. Ceram. Soc. 33, 1343–1347 (2013)CrossRef
10.
go back to reference Baker, J. Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging. In Proceedings of the 3rd International Energy Conversion Engineering Conference, San Francisco, CA, USA,15–18 August 2005. Baker, J. Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging. In Proceedings of the 3rd International Energy Conversion Engineering Conference, San Francisco, CA, USA,15–18 August 2005.
11.
go back to reference Hashim, A.A., Mahmoud, K.I., Ridha, H.M.: Geometry and shape optimization of piezoelectric cantilever energy harvester using COMSOL multiphysics software. Int. Rev. Appl. Sci. Eng. 12(2), 103–110 (2021) Hashim, A.A., Mahmoud, K.I., Ridha, H.M.: Geometry and shape optimization of piezoelectric cantilever energy harvester using COMSOL multiphysics software. Int. Rev. Appl. Sci. Eng. 12(2), 103–110 (2021)
17.
go back to reference Bhaskaran, Prathish Raaja, Rathnam, Joseph Daniel, Koilmani, Sumangala, Subramanian, Kavitha: Multi resonant frequency piezoelectric energy harvesters integrated with high sensitivity piezoelectric accelerometer for bridge health monitoring applications. Smart Mater. Res. 2017, 1–23 (2017)CrossRef Bhaskaran, Prathish Raaja, Rathnam, Joseph Daniel, Koilmani, Sumangala, Subramanian, Kavitha: Multi resonant frequency piezoelectric energy harvesters integrated with high sensitivity piezoelectric accelerometer for bridge health monitoring applications. Smart Mater. Res. 2017, 1–23 (2017)CrossRef
18.
go back to reference Shad Roundy et al. “Improving power output for vibration-based energy scavengers”, IEEE CS and IEEE ComSoc 1536–1268/05,2005. Shad Roundy et al. “Improving power output for vibration-based energy scavengers”, IEEE CS and IEEE ComSoc 1536–1268/05,2005.
20.
go back to reference Bhatia, Deepak, Himanshu Sharma, R.S., Meena, V.R. Palkar.: A novel ZnO piezoelectric microcantilever energy scavenger: Fabrication and characterization. Sens. Bio-Sens. Res. 9, 45–52 (2016)CrossRef Bhatia, Deepak, Himanshu Sharma, R.S., Meena, V.R. Palkar.: A novel ZnO piezoelectric microcantilever energy scavenger: Fabrication and characterization. Sens. Bio-Sens. Res. 9, 45–52 (2016)CrossRef
21.
go back to reference Ronak Shah, Anishsanjay Nayak and B D Pant, ‘Design and Simulation of Piezoelectric MEMS Cantilever’, COMSOL Multiphysics Conference 2015, 2015. Ronak Shah, Anishsanjay Nayak and B D Pant, ‘Design and Simulation of Piezoelectric MEMS Cantilever’, COMSOL Multiphysics Conference 2015, 2015.
22.
go back to reference Manivannan, M., Daniel, R.J., Sumangala, K.: Design of Stiction free - lower pull in voltage RF MEMS Switch using varying section cantilever beam. AMR 403–408, 4141–4147 (2011)CrossRef Manivannan, M., Daniel, R.J., Sumangala, K.: Design of Stiction free - lower pull in voltage RF MEMS Switch using varying section cantilever beam. AMR 403–408, 4141–4147 (2011)CrossRef
24.
go back to reference Ferrari, Marco, Ferrari, Vittorio, Guizzetti, Michele, Marioli, Daniele, Taroni, Andrea: Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sens. Actuators A: Phys. 142(1), 329–335 (2008)CrossRef Ferrari, Marco, Ferrari, Vittorio, Guizzetti, Michele, Marioli, Daniele, Taroni, Andrea: Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems. Sens. Actuators A: Phys. 142(1), 329–335 (2008)CrossRef
Metadata
Title
Miniaturized but efficient cantilever beam vibration energy harvesters for wireless bridge health monitoring applications
Authors
Kannan Solai
Meera Chandrasekaran
Joseph Daniel Rathnasami
Publication date
17-10-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 12/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-02058-1

Other articles of this Issue 12/2021

Archive of Applied Mechanics 12/2021 Go to the issue

Premium Partners