Skip to main content
Top
Published in:

2019 | OriginalPaper | Chapter

Mining Emerging High Utility Itemsets over Streaming Database

Authors : Acquah Hackman, Yu Huang, Philip S. Yu, Vincent S. Tseng

Published in: Advanced Data Mining and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

HUIM (High Utility Itemset Mining) is a classical data mining problem that has gained much attention in the research community with a wide range of applications. The goal of HUIM is to identify all itemsets whose utility satisfies a user-defined threshold. In this paper, we address a new and interesting direction of high utility itemsets mining, which is mining temporal emerging high utility itemsets from data streams. The temporal emerging high utility itemsets are those that are not high utility in the current time window of the data stream but have high potential to become a high utility in the subsequent time windows. Discovery of temporal emerging high utility itemsets is an important process for mining interesting itemsets that yield high profits from streaming databases, which has many applications such as proactive decision making by domain experts, building powerful classifiers, market basket analysis, catalogue design, among others. We propose a novel method, named EFTemHUI (Efficient Framework for Temporal Emerging HUI mining), to identify Emerging High Utility Itemsets better. To improve the efficiency of the mining process, we devise a new mechanism to evaluate the high utility itemsets that will emerge, which has the ability to capture and store the information about potential high utility itemsets. Through extensive experimentation using three datasets, we proved that the proposed method yields excellent accuracy and low errors in the prediction of emerging patterns for the next window.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., Tseng, V.S.: EFIM: a fast and memory efficient algorithm for high-utility itemset mining. Knowl. Inf. Syst. 51(2), 595–625 (2017)CrossRef Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., Tseng, V.S.: EFIM: a fast and memory efficient algorithm for high-utility itemset mining. Knowl. Inf. Syst. 51(2), 595–625 (2017)CrossRef
2.
go back to reference Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: Proceedings of the Third IEEE International Conference on Data Mining, ICDM 2003, Washington, DC, USA, p. 19. IEEE Computer Society (2003) Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: Proceedings of the Third IEEE International Conference on Data Mining, ICDM 2003, Washington, DC, USA, p. 19. IEEE Computer Society (2003)
3.
go back to reference Liu, J., Wang, K., Fung, B.C.M.: Direct discovery of high utility itemsets without candidate generation. In: Proceedings of the 2012 IEEE 12th International Conference on Data Mining, ICDM 2012, Washington, DC, USA, pp. 984–989. IEEE Computer Society (2012) Liu, J., Wang, K., Fung, B.C.M.: Direct discovery of high utility itemsets without candidate generation. In: Proceedings of the 2012 IEEE 12th International Conference on Data Mining, ICDM 2012, Washington, DC, USA, pp. 984–989. IEEE Computer Society (2012)
4.
go back to reference Shie, B.E., Yu, P.S., Tseng, V.S.: Efficient algorithms for mining maximal high utility itemsets from data streams with different models. Expert Syst. Appl. 39(17), 12947–12960 (2012)CrossRef Shie, B.E., Yu, P.S., Tseng, V.S.: Efficient algorithms for mining maximal high utility itemsets from data streams with different models. Expert Syst. Appl. 39(17), 12947–12960 (2012)CrossRef
5.
go back to reference Dam, T.L., Li, K., Fournier-Viger, P., Duong, Q.H.: An efficient algorithm for mining top-k on-shelf high utility itemsets. Knowl. Inf. Syst. 52(3), 621–655 (2017)CrossRef Dam, T.L., Li, K., Fournier-Viger, P., Duong, Q.H.: An efficient algorithm for mining top-k on-shelf high utility itemsets. Knowl. Inf. Syst. 52(3), 621–655 (2017)CrossRef
6.
go back to reference Dawar, S., Sharma, V., Goyal, V.: Mining top-k high-utility itemsets from a data stream under sliding window model. Appl. Intell. 47(4), 1240–1255 (2017)CrossRef Dawar, S., Sharma, V., Goyal, V.: Mining top-k high-utility itemsets from a data stream under sliding window model. Appl. Intell. 47(4), 1240–1255 (2017)CrossRef
7.
go back to reference Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 1999, pp. 43–52. ACM, New York (1999) Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 1999, pp. 43–52. ACM, New York (1999)
9.
go back to reference Song, W., Liu, Y., Li, J.: BAHUI: fast and memory efficient mining of high utility itemsets based on bitmap. Int. J. Data Warehous. Min. 10(1), 1–15 (2014)CrossRef Song, W., Liu, Y., Li, J.: BAHUI: fast and memory efficient mining of high utility itemsets based on bitmap. Int. J. Data Warehous. Min. 10(1), 1–15 (2014)CrossRef
10.
go back to reference Ikonomovska, E., Loskovska, S., Gjorgjevik, D.: A survey of stream data mining. In: Proceedings of 8th National Conference with International Participation, ETAI, pp. 19–21 (2007) Ikonomovska, E., Loskovska, S., Gjorgjevik, D.: A survey of stream data mining. In: Proceedings of 8th National Conference with International Participation, ETAI, pp. 19–21 (2007)
11.
13.
go back to reference Zhang, X., Dong, G., Ramamohanarao, K.: Exploring constraints to efficiently mine emerging patterns from large high-dimensional datasets. In: KDD, pp. 310–314 (2000) Zhang, X., Dong, G., Ramamohanarao, K.: Exploring constraints to efficiently mine emerging patterns from large high-dimensional datasets. In: KDD, pp. 310–314 (2000)
14.
go back to reference García-Vico, A.M., Montes, J., Aguilera, J., Carmona, C.J., del Jesus, M.J.: Analysing concentrating photovoltaics technology through the use of emerging pattern mining. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds.) ICEUTE/SOCO/CISIS -2016. AISC, vol. 527, pp. 334–344. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47364-2_32CrossRef García-Vico, A.M., Montes, J., Aguilera, J., Carmona, C.J., del Jesus, M.J.: Analysing concentrating photovoltaics technology through the use of emerging pattern mining. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds.) ICEUTE/SOCO/CISIS -2016. AISC, vol. 527, pp. 334–344. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-47364-2_​32CrossRef
15.
go back to reference García-Vico, A., Carmona, C., Martín, D., García-Borroto, M., del Jesus, M.: An overview of emerging pattern mining in supervised descriptive rule discovery: taxonomy, empirical study, trends, and prospects. Wiley Interdisc. Rev. Data Min. Knowl. Discovery 8(1), e1231 (2018)CrossRef García-Vico, A., Carmona, C., Martín, D., García-Borroto, M., del Jesus, M.: An overview of emerging pattern mining in supervised descriptive rule discovery: taxonomy, empirical study, trends, and prospects. Wiley Interdisc. Rev. Data Min. Knowl. Discovery 8(1), e1231 (2018)CrossRef
16.
go back to reference Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. 15(1), 3389–3393 (2014)MATH Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. 15(1), 3389–3393 (2014)MATH
Metadata
Title
Mining Emerging High Utility Itemsets over Streaming Database
Authors
Acquah Hackman
Yu Huang
Philip S. Yu
Vincent S. Tseng
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-35231-8_1

Premium Partner