Skip to main content
Top

2024 | OriginalPaper | Chapter

Mittag-Leffler Stability for Non-instantaneous Impulsive Generalized Proportional Caputo Fractional Differential Equations

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fractional calculus is a powerful tool in applied mathematics and is used to study problems in mathematical physics, finance, hydrology, biophysics, thermodynamics, control theory, statistical mechanics, astrophysics, cosmology and bioengineering. In studying stability for nonlinear fractional differential equations, there are several approaches in the literature, one of which is the Lyapunov approach. There are however several difficulties encountered when one applies the Lyapunov technique to fractional differential equations and one of the main difficulties is connected with the appropriate definition of derivatives of Lyapunov functions among differential equations of fractional order. In this paper fractional differential equations with non-instantaneous impulses and generalized proportional Caputo fractional derivative are studied. The case of changeable lower limit of the fractional derivative at any and time point of the non-instantaneuos impulse is considered. The Mitatg-Leffler stability with respect to the impulses is defined. Also, its partial case of exponential stability with respect to impulses is given. Sufficient conditions by the help with Lyapunov like functions are obtained. An example is given to illustrate our results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abbas, S., Benchohra, M.: Stability results for fractional differential equations with state-dependent delay and not instantaneous impulses. Math. Slovaca 67, 4, 875–894 (2017). Abbas, S., Benchohra, M.: Stability results for fractional differential equations with state-dependent delay and not instantaneous impulses. Math. Slovaca 67, 4, 875–894 (2017).
4.
go back to reference Agarwal, R. P., Hristova, S., O’Regan, D. Mittag-Leffler Type Stability of Delay Generalized Proportional Caputo Fractional Differential Equations: Cases of Non-Instantaneous Impulses, Instantaneous Impulses and without Impulses. Symmetry, 2022, 14, 2290. https://doi.org/10.3390/sym14112290. Agarwal, R. P., Hristova, S., O’Regan, D. Mittag-Leffler Type Stability of Delay Generalized Proportional Caputo Fractional Differential Equations: Cases of Non-Instantaneous Impulses, Instantaneous Impulses and without Impulses. Symmetry, 2022, 14, 2290. https://​doi.​org/​10.​3390/​sym14112290.
5.
go back to reference Almeida. R., Agarwal, R. P., Hristova, S., O’Regan, D.: Quadratic Lyapunov functions for stability of generalized proportional fractional differential equations with applications to neural networks. Axioms 10 (4), (2021) 322. https://doi.org/10.3390/axioms10040322. Almeida. R., Agarwal, R. P., Hristova, S., O’Regan, D.: Quadratic Lyapunov functions for stability of generalized proportional fractional differential equations with applications to neural networks. Axioms 10 (4), (2021) 322. https://​doi.​org/​10.​3390/​axioms10040322.
6.
go back to reference Anguraj, A., Kanjanadevi, S., Non-instantaneous impulsive fractional neutral differential equations with state-dependent delay, Progr. Fract. Differ. Appl. 3, 3 (2017), 207–218. Anguraj, A., Kanjanadevi, S., Non-instantaneous impulsive fractional neutral differential equations with state-dependent delay, Progr. Fract. Differ. Appl. 3, 3 (2017), 207–218.
7.
go back to reference Bai, L., Nieto, J.J., Variational approach to differential equations with not instantaneous impulses, Appl. Math. Letters, 73 (2017), 44–48. Bai, L., Nieto, J.J., Variational approach to differential equations with not instantaneous impulses, Appl. Math. Letters, 73 (2017), 44–48.
8.
go back to reference Feckan, M., Zhou, Y., Wang, J.R., On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonl. Sci. Numer. Simul.17 , (2012) 3050–3060. Feckan, M., Zhou, Y., Wang, J.R., On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonl. Sci. Numer. Simul.17 , (2012) 3050–3060.
9.
go back to reference Jarad F., Abdeljawad T. Generalized fractional derivatives and Laplace transform, Discret. Contin. Dyn. Syst. Ser. S, 13, (2020) 709–722. Jarad F., Abdeljawad T. Generalized fractional derivatives and Laplace transform, Discret. Contin. Dyn. Syst. Ser. S, 13, (2020) 709–722.
10.
go back to reference Jarad F., Abdeljawad T., Alzabut J. Generalized fractional derivatives generated by a class of local proportional derivatives.Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. Jarad F., Abdeljawad T., Alzabut J. Generalized fractional derivatives generated by a class of local proportional derivatives.Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471.
11.
go back to reference Hernandez, E., O’Regan, D., On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc. 141 (2013), 1641–1649. Hernandez, E., O’Regan, D., On a new class of abstract impulsive differential equations. Proc. Amer. Math. Soc. 141 (2013), 1641–1649.
12.
go back to reference Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equa-tions, World Scientiffic, Singapore, 1989. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equa-tions, World Scientiffic, Singapore, 1989.
13.
go back to reference Li,P., Xu, C.: Boundary value problems of fractional order differential equation with integral boundary conditions and not instantaneous impulses. J. Function Spaces. 2015, Article ID 954925. Li,P., Xu, C.: Boundary value problems of fractional order differential equation with integral boundary conditions and not instantaneous impulses. J. Function Spaces. 2015, Article ID 954925.
14.
go back to reference Li Y., Chen Y., Podlubny I., Mittag–Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, (2009), 1965–1969. Li Y., Chen Y., Podlubny I., Mittag–Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, (2009), 1965–1969.
15.
go back to reference Sadati, S.J., Baleanu, D., Ranjbar, A., Ghaderi, R., Abdeljawad (Maraaba), T.: Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay. Abstr. Appl. Anal. (2010), Article ID 108651, 7 pp. Sadati, S.J., Baleanu, D., Ranjbar, A., Ghaderi, R., Abdeljawad (Maraaba), T.: Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay. Abstr. Appl. Anal. (2010), Article ID 108651, 7 pp.
16.
go back to reference Samoilenko, A.M., Perestyuk, N.A.: Impulsive differential equations, World Scientiffic, Singapore, 1995. Samoilenko, A.M., Perestyuk, N.A.: Impulsive differential equations, World Scientiffic, Singapore, 1995.
17.
go back to reference Wang, J.R., Feckan, M., Zhou, Y.: A survey on impulsive fractional differential equations, Frac. Calc. Appl. Anal. 19, 4, (2016), 806–831. Wang, J.R., Feckan, M., Zhou, Y.: A survey on impulsive fractional differential equations, Frac. Calc. Appl. Anal. 19, 4, (2016), 806–831.
18.
go back to reference Yang, D., Wang, J.R., O’Regan, D.: A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order, Appl. Math. Comput. 321, (2018), 654–671. Yang, D., Wang, J.R., O’Regan, D.: A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order, Appl. Math. Comput. 321, (2018), 654–671.
Metadata
Title
Mittag-Leffler Stability for Non-instantaneous Impulsive Generalized Proportional Caputo Fractional Differential Equations
Author
Snezhana Hristova
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_19

Premium Partner