Skip to main content
Top
Published in:

29-04-2022

Mixture survival trees for cancer risk classification

Authors: Beilin Jia, Donglin Zeng, Jason J. Z. Liao, Guanghan F. Liu, Xianming Tan, Guoqing Diao, Joseph G. Ibrahim

Published in: Lifetime Data Analysis | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In oncology studies, it is important to understand and characterize disease heterogeneity among patients so that patients can be classified into different risk groups and one can identify high-risk patients at the right time. This information can then be used to identify a more homogeneous patient population for developing precision medicine. In this paper, we propose a mixture survival tree approach for direct risk classification. We assume that the patients can be classified into a pre-specified number of risk groups, where each group has distinct survival profile. Our proposed tree-based methods are devised to estimate latent group membership using an EM algorithm. The observed data log-likelihood function is used as the splitting criterion in recursive partitioning. The finite sample performance is evaluated by extensive simulation studies and the proposed method is illustrated by a case study in breast cancer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Bussy S, Guilloux A, Gaïffas S, Jannot A-S (2019) C-mix: a high-dimensional mixture model for censored durations, with applications to genetic data. Stat Methods Med Res 28(5):1523–1539MathSciNetCrossRef Bussy S, Guilloux A, Gaïffas S, Jannot A-S (2019) C-mix: a high-dimensional mixture model for censored durations, with applications to genetic data. Stat Methods Med Res 28(5):1523–1539MathSciNetCrossRef
go back to reference Chi Y-Y, Ibrahim JG (2006) Joint models for multivariate longitudinal and multivariate survival data. Biometrics 62(2):432–445MathSciNetCrossRef Chi Y-Y, Ibrahim JG (2006) Joint models for multivariate longitudinal and multivariate survival data. Biometrics 62(2):432–445MathSciNetCrossRef
go back to reference Ciampi A, Bush R, Gospodarowicz M, Till J (1981) An approach to classifying prognostic factors related to survival experience for non-hodgkins lymphoma patients: based on a series of 982 patients: 1967–1975. Cancer 47(3):621–627CrossRef Ciampi A, Bush R, Gospodarowicz M, Till J (1981) An approach to classifying prognostic factors related to survival experience for non-hodgkins lymphoma patients: based on a series of 982 patients: 1967–1975. Cancer 47(3):621–627CrossRef
go back to reference Ciampi A, Chang C, Hogg S, McKinney S (1987) Recursive partition: a versatile method for exploratory-data analysis in biostatistics. Biostatistics. Springer, New York, pp 23–50CrossRef Ciampi A, Chang C, Hogg S, McKinney S (1987) Recursive partition: a versatile method for exploratory-data analysis in biostatistics. Biostatistics. Springer, New York, pp 23–50CrossRef
go back to reference Colleoni M, Litman H, Castiglione-Gertsch M, Sauerbrei W, Gelber R, Bonetti M, Coates A, Schumacher M, Bastert G, Rudenstam C et al (2002) Duration of adjuvant chemotherapy for breast cancer: a joint analysis of two randomised trials investigating three versus six courses of cmf. Br J Cancer 86(11):1705–1714CrossRef Colleoni M, Litman H, Castiglione-Gertsch M, Sauerbrei W, Gelber R, Bonetti M, Coates A, Schumacher M, Bastert G, Rudenstam C et al (2002) Duration of adjuvant chemotherapy for breast cancer: a joint analysis of two randomised trials investigating three versus six courses of cmf. Br J Cancer 86(11):1705–1714CrossRef
go back to reference Davis RB, Anderson JR (1989) Exponential survival trees. Stat Med 8(8):947–961CrossRef Davis RB, Anderson JR (1989) Exponential survival trees. Stat Med 8(8):947–961CrossRef
go back to reference Farewell VT (1982) The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38(4):1041–1046CrossRef Farewell VT (1982) The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38(4):1041–1046CrossRef
go back to reference Gordon L, Olshen RA (1985) Tree-structured survival analysis. Cancer Treatment Rep 69(10):1065–1069 Gordon L, Olshen RA (1985) Tree-structured survival analysis. Cancer Treatment Rep 69(10):1065–1069
go back to reference Ibrahim N, Kudus A (2009) Decision tree for prognostic classification of multivariate survival data and competing risks. INTECH Open Access Publisher, LondonMATH Ibrahim N, Kudus A (2009) Decision tree for prognostic classification of multivariate survival data and competing risks. INTECH Open Access Publisher, LondonMATH
go back to reference International Breast Cancer Study Group (1996) Duration and reintroduction of adjuvant chemotherapy for node-positive premenopausal breast cancer patients. J Clin Oncol 14(6):1885–1894 International Breast Cancer Study Group (1996) Duration and reintroduction of adjuvant chemotherapy for node-positive premenopausal breast cancer patients. J Clin Oncol 14(6):1885–1894
go back to reference Kannel W, McGee D (1979) Diabetes and glucose tolerance as risk factors for cardiovascular disease: the framingham study. Diab Care 2(2):120–126CrossRef Kannel W, McGee D (1979) Diabetes and glucose tolerance as risk factors for cardiovascular disease: the framingham study. Diab Care 2(2):120–126CrossRef
go back to reference Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP (1979) An investigation of coronary heart disease in families: the framingham offspring study. Am J Epidemiol 110(3):281–290CrossRef Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP (1979) An investigation of coronary heart disease in families: the framingham offspring study. Am J Epidemiol 110(3):281–290CrossRef
go back to reference Larson MG, Dinse GE (1985) A mixture model for the regression analysis of competing risks data. J Roy Stat Soc Ser C (Appl Stat) 34(3):201–211MathSciNet Larson MG, Dinse GE (1985) A mixture model for the regression analysis of competing risks data. J Roy Stat Soc Ser C (Appl Stat) 34(3):201–211MathSciNet
go back to reference LeBlanc M, Crowley J (1992) Relative risk trees for censored survival data. Biometrics 48(2):411–425CrossRef LeBlanc M, Crowley J (1992) Relative risk trees for censored survival data. Biometrics 48(2):411–425CrossRef
go back to reference Liao JJ, Farooqui MZ, Marinello P, Hartzel J, Anderson K, Ma J, Gause CK (2020) Using artificial intelligence tools in answering important clinical questions: the keynote-183 multiple myeloma experience. Contemp Clin Trials p 106179 Liao JJ, Farooqui MZ, Marinello P, Hartzel J, Anderson K, Ma J, Gause CK (2020) Using artificial intelligence tools in answering important clinical questions: the keynote-183 multiple myeloma experience. Contemp Clin Trials p 106179
go back to reference Liao JJ, Liu GF (2019) A flexible parametric survival model for fitting time to event data in clinical trials. Pharm Stat 18(5):555–567CrossRef Liao JJ, Liu GF (2019) A flexible parametric survival model for fitting time to event data in clinical trials. Pharm Stat 18(5):555–567CrossRef
go back to reference Liu GF, Liao JJ (2020) Analysis of time-to-event data using a flexible mixture model under a constraint of proportional hazards. J Biopharm Stat 30(5):783–796CrossRef Liu GF, Liao JJ (2020) Analysis of time-to-event data using a flexible mixture model under a constraint of proportional hazards. J Biopharm Stat 30(5):783–796CrossRef
go back to reference Marubini E, Morabito A, Valsecchi M (1983) Prognostic factors and risk groups: some results given by using an algorithm suitable for censored survival data. Stat Med 2(2):295–303CrossRef Marubini E, Morabito A, Valsecchi M (1983) Prognostic factors and risk groups: some results given by using an algorithm suitable for censored survival data. Stat Med 2(2):295–303CrossRef
go back to reference Moradian H, Larocque D, Bellavance F (2017) L1 splitting rules in survival forests. Lifetime Data Anal 23(4):671–691MathSciNetCrossRef Moradian H, Larocque D, Bellavance F (2017) L1 splitting rules in survival forests. Lifetime Data Anal 23(4):671–691MathSciNetCrossRef
go back to reference Shen J, He X (2015) Inference for subgroup analysis with a structured logistic-normal mixture model. J Am Stat Assoc 110(509):303–312MathSciNetCrossRef Shen J, He X (2015) Inference for subgroup analysis with a structured logistic-normal mixture model. J Am Stat Assoc 110(509):303–312MathSciNetCrossRef
go back to reference Sun Y, Chiou S-H, Wang M-C (2019) Roc-guided survival trees and ensembles. Biometrics Sun Y, Chiou S-H, Wang M-C (2019) Roc-guided survival trees and ensembles. Biometrics
go back to reference Tseng Y-J, Wang H-Y, Lin T-W, Lu J-J, Hsieh C-H, Liao C-T (2020) Development of a machine learning model for survival risk stratification of patients with advanced oral cancer. JAMA Netw Open 3(8):e2011768–e2011768CrossRef Tseng Y-J, Wang H-Y, Lin T-W, Lu J-J, Hsieh C-H, Liao C-T (2020) Development of a machine learning model for survival risk stratification of patients with advanced oral cancer. JAMA Netw Open 3(8):e2011768–e2011768CrossRef
go back to reference Vergara P, Tzou WS, Tung R, Brombin C, Nonis A, Vaseghi M, Frankel DS, Di Biase L, Tedrow U, Mathuria N et al (2018) Predictive score for identifying survival and recurrence risk profiles in patients undergoing ventricular tachycardia ablation: the i-vt score. Circul Arrhyth Electrophysiol 11(12):e006730CrossRef Vergara P, Tzou WS, Tung R, Brombin C, Nonis A, Vaseghi M, Frankel DS, Di Biase L, Tedrow U, Mathuria N et al (2018) Predictive score for identifying survival and recurrence risk profiles in patients undergoing ventricular tachycardia ablation: the i-vt score. Circul Arrhyth Electrophysiol 11(12):e006730CrossRef
go back to reference Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97(18):1837–1847 Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97(18):1837–1847
go back to reference Zeng D, Mao L, Lin D (2016) Maximum likelihood estimation for semiparametric transformation models with interval-censored data. Biometrika 103(2):253–271MathSciNetCrossRef Zeng D, Mao L, Lin D (2016) Maximum likelihood estimation for semiparametric transformation models with interval-censored data. Biometrika 103(2):253–271MathSciNetCrossRef
go back to reference Zhou Y, McArdle JJ (2015) Rationale and applications of survival tree and survival ensemble methods. Psychometrika 80(3):811–833MathSciNetCrossRef Zhou Y, McArdle JJ (2015) Rationale and applications of survival tree and survival ensemble methods. Psychometrika 80(3):811–833MathSciNetCrossRef
Metadata
Title
Mixture survival trees for cancer risk classification
Authors
Beilin Jia
Donglin Zeng
Jason J. Z. Liao
Guanghan F. Liu
Xianming Tan
Guoqing Diao
Joseph G. Ibrahim
Publication date
29-04-2022
Publisher
Springer US
Published in
Lifetime Data Analysis / Issue 3/2022
Print ISSN: 1380-7870
Electronic ISSN: 1572-9249
DOI
https://doi.org/10.1007/s10985-022-09552-w

Premium Partner