Skip to main content
Top

2025 | OriginalPaper | Chapter

ML-Based Intrusion Detection with Feature Analysis on Unbalanced UNSW-NB15 Dataset

Authors : Yambem Ranjan Singh, Chandam Chinglensana Singh, Linthoingambi Takhellambam, Khumukcham Robindro Singh, Nazrul Hoque

Published in: Advances in Communication, Devices and Networking

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Intrusion detection in modern networks, encompassing the Internet of Things (IoT), software-defined networking (SDN), and cloud environments, represents a pressing research challenge for network security researchers and practitioners. Our research paper focused on utilizing the UNSW-NB15 intrusion dataset and applied a diverse set of machine learning(ML) models to evaluate their performance in this context. However, the dataset presented unique challenges, being highly imbalanced and featuring nine distinct types of attacks. Consequently, many conventional ML models struggled to accurately identify these attack types with high precision. To address this challenge, we have introduced a novel probabilistic-based method to select class-specific instances and conducted feature analysis to pinpoint the most informative attributes for training ML models. The objective was to equip these models with the capability to provide high-precision detection. The outcome of this endeavour was highly promising: our proposed instance selection method consistently delivered accuracy rates exceeding 99% and 98% across a range of tested ML models, supporting both binary and multi-class classification tasks, respectively. These findings underscore the potential of our approach in enhancing the accuracy and effectiveness of intrusion detection in modern network environments, offering a valuable contribution to the field of network security research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liao H-J, Richard Lin C-H, Lin Y-C, Tung K-Y (2013) Intrusion detection system: a comprehensive review. J Network Comput Appl 36(1):16–24 Liao H-J, Richard Lin C-H, Lin Y-C, Tung K-Y (2013) Intrusion detection system: a comprehensive review. J Network Comput Appl 36(1):16–24
2.
go back to reference Kasongo SM, Sun Y (2020) Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 dataset. J Big Data 7:1–20 Kasongo SM, Sun Y (2020) Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 dataset. J Big Data 7:1–20
3.
go back to reference Kasongo SM, Sun Y (2019) A deep learning method with filter based feature engineering for wireless intrusion detection system. IEEE Access 7:38597–38607 Kasongo SM, Sun Y (2019) A deep learning method with filter based feature engineering for wireless intrusion detection system. IEEE Access 7:38597–38607
4.
go back to reference El Naqa I, Murphy MJ (2015) What is machine learning? Springer, Berlin El Naqa I, Murphy MJ (2015) What is machine learning? Springer, Berlin
5.
go back to reference Khatri S, Arora A, Agrawal AP (2020) Supervised machine learning algorithms for credit card fraud detection: a comparison. In: 2020 10th international conference on cloud computing, data science & engineering (confluence). IEEE, pp 680–683 Khatri S, Arora A, Agrawal AP (2020) Supervised machine learning algorithms for credit card fraud detection: a comparison. In: 2020 10th international conference on cloud computing, data science & engineering (confluence). IEEE, pp 680–683
6.
go back to reference Moustafa N, Slay J (2015) UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 military communications and information systems conference (MilCIS). IEEE, pp 1–6 Moustafa N, Slay J (2015) UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 military communications and information systems conference (MilCIS). IEEE, pp 1–6
7.
go back to reference Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the KDD cup 99 data set. In: 2009 IEEE symposium on computational intelligence for security and defense applications. IEEE, pp 1–6 Tavallaee M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the KDD cup 99 data set. In: 2009 IEEE symposium on computational intelligence for security and defense applications. IEEE, pp 1–6
8.
go back to reference Bakro M, Kumar RR, Alabrah A, Ashraf Z, Nadeem Ahmed Md, Shameem M, Abdelsalam A (2023) An improved design for a cloud intrusion detection system using hybrid features selection approach with ML classifier. IEEE Access Bakro M, Kumar RR, Alabrah A, Ashraf Z, Nadeem Ahmed Md, Shameem M, Abdelsalam A (2023) An improved design for a cloud intrusion detection system using hybrid features selection approach with ML classifier. IEEE Access
9.
go back to reference Tama BA, Comuzzi M, Rhee K-H (2019) Tse-ids: a two-stage classifier ensemble for intelligent anomaly-based intrusion detection system. IEEE Access 7:94497–94507 Tama BA, Comuzzi M, Rhee K-H (2019) Tse-ids: a two-stage classifier ensemble for intelligent anomaly-based intrusion detection system. IEEE Access 7:94497–94507
10.
go back to reference Souhail M, Tajjeeddine R, Nasser A (2019) Network based intrusion detection using the UNSW-NB15 dataset. Int J Comput Digital Syst 8(5):478–487 Souhail M, Tajjeeddine R, Nasser A (2019) Network based intrusion detection using the UNSW-NB15 dataset. Int J Comput Digital Syst 8(5):478–487
11.
go back to reference Kasongo SM, Sun Y (2020) Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 dataset. J Big Data 7:1–20 Kasongo SM, Sun Y (2020) Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 dataset. J Big Data 7:1–20
12.
go back to reference Husain A, Salem A, Jim C, Dimitoglou G (2019) Development of an efficient network intrusion detection model using extreme gradient boosting (xgboost) on the UNSW-NB15 dataset. In: 2019 IEEE International symposium on signal processing and information technology (ISSPIT). IEEE, pp 1–7 Husain A, Salem A, Jim C, Dimitoglou G (2019) Development of an efficient network intrusion detection model using extreme gradient boosting (xgboost) on the UNSW-NB15 dataset. In: 2019 IEEE International symposium on signal processing and information technology (ISSPIT). IEEE, pp 1–7
13.
go back to reference Nour M, Jill S (2016) The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the kdd99 data set. Inform Secur J Global Perspect 25(1–3):18–31 Nour M, Jill S (2016) The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the kdd99 data set. Inform Secur J Global Perspect 25(1–3):18–31
14.
go back to reference Hammad M, El-Medany W, Ismail Y (2020) Intrusion detection system using feature selection with clustering and classification machine learning algorithms on the UNSW-NB15 dataset. In: 2020 international conference on innovation and intelligence for informatics, computing and technologies (3ICT). IEEE, pp 1–6 Hammad M, El-Medany W, Ismail Y (2020) Intrusion detection system using feature selection with clustering and classification machine learning algorithms on the UNSW-NB15 dataset. In: 2020 international conference on innovation and intelligence for informatics, computing and technologies (3ICT). IEEE, pp 1–6
15.
go back to reference Fuat TÜRK (2023) Analysis of intrusion detection systems in UNSW-NB15 and NSL-KDD datasets with machine learning algorithms. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 12(2):465–477 Fuat TÜRK (2023) Analysis of intrusion detection systems in UNSW-NB15 and NSL-KDD datasets with machine learning algorithms. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 12(2):465–477
16.
go back to reference Kumar V, Sinha D, Das AK, Pandey SC, Goswami RT (2020) An integrated rule based intrusion detection system: analysis on UNSW-NB15 data set and the real time online dataset. Cluster Comput 23:1397–1418 Kumar V, Sinha D, Das AK, Pandey SC, Goswami RT (2020) An integrated rule based intrusion detection system: analysis on UNSW-NB15 data set and the real time online dataset. Cluster Comput 23:1397–1418
17.
go back to reference Geeta K, Gulshan K (2020) Performance analysis of machine learning classifiers for intrusion detection using UNSW-NB15 dataset. Comput Sci Inf Technol (CS IT) 10(20):31–40 Geeta K, Gulshan K (2020) Performance analysis of machine learning classifiers for intrusion detection using UNSW-NB15 dataset. Comput Sci Inf Technol (CS IT) 10(20):31–40
Metadata
Title
ML-Based Intrusion Detection with Feature Analysis on Unbalanced UNSW-NB15 Dataset
Authors
Yambem Ranjan Singh
Chandam Chinglensana Singh
Linthoingambi Takhellambam
Khumukcham Robindro Singh
Nazrul Hoque
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_26