Skip to main content
Top

2024 | OriginalPaper | Chapter

MLMC Techniques for Discontinuous Functions

Author : Michael B. Giles

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Multilevel Monte Carlo (MLMC) approach usually works well when estimating the expected value of a quantity which is a Lipschitz function of intermediate quantities, but if it is a discontinuous function it can lead to a much slower decay in the variance of the MLMC correction. This article reviews the literature on techniques which can be used to overcome this challenge in a variety of different contexts, and discusses recent developments using either a branching diffusion or adaptive sampling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
2
Note that if f is smooth, or at least Lipschitz, then it is better to use an “antithetic” estimator [8, 14, 15, 18], but this does not give a better order of convergence when f is discontinuous.
 
Literature
1.
go back to reference Achtsis, N., Cools, R., Nuyens, D.: Conditional sampling for barrier option pricing under the LT method. SIAM J. Financ. Math. 4, 327–352 (2013)MathSciNetCrossRef Achtsis, N., Cools, R., Nuyens, D.: Conditional sampling for barrier option pricing under the LT method. SIAM J. Financ. Math. 4, 327–352 (2013)MathSciNetCrossRef
2.
go back to reference Altmayer, M., Neuenkirch, A.: Multilevel Monte Carlo quadrature of discontinuous payoffs in the generalized Heston model using Malliavin integration by parts. SIAM J. Financ. Math. 6(1), 22–52 (2015)MathSciNetCrossRef Altmayer, M., Neuenkirch, A.: Multilevel Monte Carlo quadrature of discontinuous payoffs in the generalized Heston model using Malliavin integration by parts. SIAM J. Financ. Math. 6(1), 22–52 (2015)MathSciNetCrossRef
3.
go back to reference Asmussen, S., Glynn, P.W.: Stochastic Simulation. Springer, New York (2007) Asmussen, S., Glynn, P.W.: Stochastic Simulation. Springer, New York (2007)
4.
6.
go back to reference Bayer, C., Siebenmorgen, M., Tempone, R.: Smoothing the payoff for efficient computation of basket option prices. Quant. Financ. 18(3), 491–505 (2018)MathSciNetCrossRef Bayer, C., Siebenmorgen, M., Tempone, R.: Smoothing the payoff for efficient computation of basket option prices. Quant. Financ. 18(3), 491–505 (2018)MathSciNetCrossRef
7.
go back to reference Broadie, M., Du, Y., Moallemi, C.C.: Efficient risk estimation via nested sequential simulation. Manag. Sci. 57(6), 1172–1194 (2011)CrossRef Broadie, M., Du, Y., Moallemi, C.C.: Efficient risk estimation via nested sequential simulation. Manag. Sci. 57(6), 1172–1194 (2011)CrossRef
8.
go back to reference Bujok, K., Hambly, B., Reisinger, C.: Multilevel simulation of functionals of Bernoulli random variables with application to basket credit derivatives. Methodol. Comput. Appl. Probab. 17(3), 579–604 (2015)MathSciNetCrossRef Bujok, K., Hambly, B., Reisinger, C.: Multilevel simulation of functionals of Bernoulli random variables with application to basket credit derivatives. Methodol. Comput. Appl. Probab. 17(3), 579–604 (2015)MathSciNetCrossRef
10.
go back to reference Burgos, S., Giles, M.B.: Computing Greeks using multilevel path simulation. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 281–296. Springer (2012) Burgos, S., Giles, M.B.: Computing Greeks using multilevel path simulation. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 281–296. Springer (2012)
11.
go back to reference Elfverson, D., Hellman, F., Målqvist, A.: A multilevel Monte Carlo method for computing failure probabilities. SIAM/ASA J. Uncertain. Quantif. 4(1), 312–330 (2016)MathSciNetCrossRef Elfverson, D., Hellman, F., Målqvist, A.: A multilevel Monte Carlo method for computing failure probabilities. SIAM/ASA J. Uncertain. Quantif. 4(1), 312–330 (2016)MathSciNetCrossRef
12.
go back to reference Giles, M.B.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 343–358. Springer (2008) Giles, M.B.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 343–358. Springer (2008)
15.
go back to reference Giles, M.B.: MLMC for nested expectations. In: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan. Springer (2018) Giles, M.B.: MLMC for nested expectations. In: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan. Springer (2018)
16.
go back to reference Giles, M.B., Bernal, F.: Multilevel estimation of expected exit times and other functionals of stopped diffusions. SIAM/ASA J. Uncertain. Quantif. 6(4), 1454–1474 (2018)MathSciNetCrossRef Giles, M.B., Bernal, F.: Multilevel estimation of expected exit times and other functionals of stopped diffusions. SIAM/ASA J. Uncertain. Quantif. 6(4), 1454–1474 (2018)MathSciNetCrossRef
17.
go back to reference Giles, M.B., Debrabant, K., Rößler, A.: Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discret. Contin. Dyn. Syst. Ser. B 24(8), 3881–3903 (2019)MathSciNet Giles, M.B., Debrabant, K., Rößler, A.: Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discret. Contin. Dyn. Syst. Ser. B 24(8), 3881–3903 (2019)MathSciNet
18.
go back to reference Giles, M.B., Goda, T.: Decision-making under uncertainty: using MLMC for efficient estimation of EVPPI. Stat. Comput. 29(4), 739–751 (2019)MathSciNetCrossRef Giles, M.B., Goda, T.: Decision-making under uncertainty: using MLMC for efficient estimation of EVPPI. Stat. Comput. 29(4), 739–751 (2019)MathSciNetCrossRef
19.
go back to reference Giles, M.B., Haji-Ali, A.-L.: Multilevel nested simulation for efficient risk estimation. SIAM/ASA J. Uncertain. Quantif. 7(2), 497–525 (2019)MathSciNetCrossRef Giles, M.B., Haji-Ali, A.-L.: Multilevel nested simulation for efficient risk estimation. SIAM/ASA J. Uncertain. Quantif. 7(2), 497–525 (2019)MathSciNetCrossRef
21.
go back to reference Giles, M.B., Haji-Ali, A.-L., Spence, J.: Efficient risk estimation for the credit valuation adjustment (2023). arXiv:2301.05886. Accepted for publication in Annals of Applied Probability Giles, M.B., Haji-Ali, A.-L., Spence, J.: Efficient risk estimation for the credit valuation adjustment (2023). arXiv:​2301.​05886. Accepted for publication in Annals of Applied Probability
22.
go back to reference Giles, M.B., Higham, D.J., Mao, X.: Analysing multilevel Monte Carlo for options with non-globally Lipschitz payoff. Financ. Stoch. 13(3), 403–413 (2009)CrossRef Giles, M.B., Higham, D.J., Mao, X.: Analysing multilevel Monte Carlo for options with non-globally Lipschitz payoff. Financ. Stoch. 13(3), 403–413 (2009)CrossRef
23.
go back to reference Giles, M.B., Nagapetyan, T., Ritter, K.: Multilevel Monte Carlo approximation of distribution functions and densities. SIAM/ASA J. Uncertain. Quantif. 3(1), 267–295 (2015)MathSciNetCrossRef Giles, M.B., Nagapetyan, T., Ritter, K.: Multilevel Monte Carlo approximation of distribution functions and densities. SIAM/ASA J. Uncertain. Quantif. 3(1), 267–295 (2015)MathSciNetCrossRef
24.
go back to reference Giles, M.B., Szpruch, L.: Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation. Ann. Appl. Probab. 24(4), 1585–1620 (2014)MathSciNetCrossRef Giles, M.B., Szpruch, L.: Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation. Ann. Appl. Probab. 24(4), 1585–1620 (2014)MathSciNetCrossRef
25.
go back to reference Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004) Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004)
26.
go back to reference Glasserman, P., Merener, N.: Convergence of a discretization scheme for jump-diffusion processes with state-dependent intensities. Proc. R. Soc. Lond. A 460, 111–127 (2004)MathSciNetCrossRef Glasserman, P., Merener, N.: Convergence of a discretization scheme for jump-diffusion processes with state-dependent intensities. Proc. R. Soc. Lond. A 460, 111–127 (2004)MathSciNetCrossRef
27.
go back to reference Haji-Ali, A.-L., Spence, J., Teckentrup, A.: Adaptive multilevel Monte Carlo for probabilities. SIAM J. Numer. Anal. 60(4), 2125–2149 (2022)MathSciNetCrossRef Haji-Ali, A.-L., Spence, J., Teckentrup, A.: Adaptive multilevel Monte Carlo for probabilities. SIAM J. Numer. Anal. 60(4), 2125–2149 (2022)MathSciNetCrossRef
28.
go back to reference Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)CrossRef Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)CrossRef
29.
go back to reference Krumscheid, S., Nobile, F.: Multilevel Monte Carlo approximation of functions. SIAM/ASA J. Uncertain. Quantif. 6(3), 1256–1293 (2018)MathSciNetCrossRef Krumscheid, S., Nobile, F.: Multilevel Monte Carlo approximation of functions. SIAM/ASA J. Uncertain. Quantif. 6(3), 1256–1293 (2018)MathSciNetCrossRef
30.
go back to reference L’Ecuyer, P.: A unified view of the IPA, SF and LR gradient estimation techniques. Manag. Sci. 36(11), 1364–1383 (1990)CrossRef L’Ecuyer, P.: A unified view of the IPA, SF and LR gradient estimation techniques. Manag. Sci. 36(11), 1364–1383 (1990)CrossRef
31.
go back to reference L’Ecuyer, P.: On the interchange of derivative and expectation for likelihood ratio derivative estimators. Manag. Sci. 41(4), 738–748 (1995)CrossRef L’Ecuyer, P.: On the interchange of derivative and expectation for likelihood ratio derivative estimators. Manag. Sci. 41(4), 738–748 (1995)CrossRef
32.
go back to reference Rhee, C.-H., Glynn, P.W.: Unbiased estimation with square root convergence for SDE models. Oper. Res. 63(5), 1026–1043 (2015)MathSciNetCrossRef Rhee, C.-H., Glynn, P.W.: Unbiased estimation with square root convergence for SDE models. Oper. Res. 63(5), 1026–1043 (2015)MathSciNetCrossRef
34.
go back to reference Xia, Y., Giles, M.B.: Multilevel path simulation for jump-diffusion SDEs. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 695–708. Springer (2012) Xia, Y., Giles, M.B.: Multilevel path simulation for jump-diffusion SDEs. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 695–708. Springer (2012)
Metadata
Title
MLMC Techniques for Discontinuous Functions
Author
Michael B. Giles
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_2

Premium Partner