Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2016 | OriginalPaper | Chapter

Model-Based Fuzzy System for Multimodal Image Segmentation

Author : Joanna Czajkowska

Published in: Computational Intelligence

Publisher: Springer International Publishing

Abstract

In this paper, a new model-based fuzzy system for multimodal 3-D image segmentation in MR series is introduced. The presented fuzzy system calculates affinity values for fuzzy connectedness segmentation procedure, which is the main stage of the processing. The fuzzy rules, generated for the system simulating a radiological analysis, are structured on the basis of Gaussian mixture model of analyzed image regions. For the model parameters estimation, different MR modalities, acquired during a single examination, are used. The segmentation abilities of a prototype system have been tested on two medical databases. The first one consists of 27 examinations with bone tumors, which are visualized with two different MR sequences. The second one is the database of brain tumors with ground truth description obtained from the MICCAI 2012 Challenge on Multimodal Brain Tumor Segmentation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Davies, A.M., Sundaram, M., James, S.L.J.: Imaging of Bone Tumors and Tumor-like Lesions, Techniques and Applications. Medical Radiology, Diagnostic Imaging. Springer, Berlin (2009) CrossRef Davies, A.M., Sundaram, M., James, S.L.J.: Imaging of Bone Tumors and Tumor-like Lesions, Techniques and Applications. Medical Radiology, Diagnostic Imaging. Springer, Berlin (2009) CrossRef
2.
go back to reference Husband, J.E., Reznek, R.H.: Imaging in Oncology. Taylor & Francis, London (2004) Husband, J.E., Reznek, R.H.: Imaging in Oncology. Taylor & Francis, London (2004)
3.
go back to reference Ma, J., Li, M., Zhao, Y.: Segmentation of multimodality osteosarcoma MRI with vectorial fuzzy-connectedness theory. Fuzzy Systems and Knowledge Discovery. Lecture Notes in Computer Science, vol. 36(14), pp. 1027–1030. Springer, Berlin (2005) Ma, J., Li, M., Zhao, Y.: Segmentation of multimodality osteosarcoma MRI with vectorial fuzzy-connectedness theory. Fuzzy Systems and Knowledge Discovery. Lecture Notes in Computer Science, vol. 36(14), pp. 1027–1030. Springer, Berlin (2005)
4.
go back to reference Zhao, Y., Hong, F., Li, M.: Segmentation of osteosarcoma based on analysis of blood-perfusion epi series. In: International Conference on Communications, Circuits and Systems, ICCCAS 2004, vol. 2. IEEE (2004) Zhao, Y., Hong, F., Li, M.: Segmentation of osteosarcoma based on analysis of blood-perfusion epi series. In: International Conference on Communications, Circuits and Systems, ICCCAS 2004, vol. 2. IEEE (2004)
5.
go back to reference Pan, J., Li, M.: Segmentation of MR osteosarcoma images. In: International Conference on Computational Intelligence and Multimedia Applications (ICCIMA03). IEEE (2003) Pan, J., Li, M.: Segmentation of MR osteosarcoma images. In: International Conference on Computational Intelligence and Multimedia Applications (ICCIMA03). IEEE (2003)
6.
go back to reference Zhao, Y., Hong, F., Li, M.: Multimodality MRI information fusion for osteosarcoma segmentation. In: IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, pp. 166–167 (2003) Zhao, Y., Hong, F., Li, M.: Multimodality MRI information fusion for osteosarcoma segmentation. In: IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, pp. 166–167 (2003)
8.
go back to reference Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Image Process. 58(3), 246–261 (1996) CrossRef Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Image Process. 58(3), 246–261 (1996) CrossRef
9.
go back to reference Pednekar, A., Kakadiaris, I.A., Kurkure, U.: Adaptive fuzzy connectedness-based medical image segmentation. In: Proceedings of the Indian Conference on Computer Vision, Graphics, and Image Processing (2008) Pednekar, A., Kakadiaris, I.A., Kurkure, U.: Adaptive fuzzy connectedness-based medical image segmentation. In: Proceedings of the Indian Conference on Computer Vision, Graphics, and Image Processing (2008)
10.
go back to reference Udupa, J.K., Saha, P.K., Lotufo, R.A.: Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1485–1500 (2002) CrossRef Udupa, J.K., Saha, P.K., Lotufo, R.A.: Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1485–1500 (2002) CrossRef
11.
go back to reference Brant, W.E., Helms, C.A.: Fundamentals of Diagnostic Radiology, vol. I. MediPage, Warszawa (2007) Polish translation Brant, W.E., Helms, C.A.: Fundamentals of Diagnostic Radiology, vol. I. MediPage, Warszawa (2007) Polish translation
12.
go back to reference Kawa, J., Szwarc, P., Bobek-Billewicz, B., Pitka, E.: Multiseries MR data in brain tumours segmentation. In: Pitka, E., Kawa, J., (eds.) Information Technologies in Biomedicine. Volume 69 of Advances in Intelligent and Soft Computing, pp. 53–64. Springer, Berlin (2010) Kawa, J., Szwarc, P., Bobek-Billewicz, B., Pitka, E.: Multiseries MR data in brain tumours segmentation. In: Pitka, E., Kawa, J., (eds.) Information Technologies in Biomedicine. Volume 69 of Advances in Intelligent and Soft Computing, pp. 53–64. Springer, Berlin (2010)
13.
go back to reference Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997) CrossRefMATH Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997) CrossRefMATH
14.
go back to reference Yamaguchi, K., Fujimoto, Y., Kobashi, S., Wakata, Y., Ishikura, R., Kuramoto, K., Imawaki, S., Hirota, S., Hata, Y.: Automated fuzzy logic based skull stripping in neonatal and infantile MR images. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–7 (2010) Yamaguchi, K., Fujimoto, Y., Kobashi, S., Wakata, Y., Ishikura, R., Kuramoto, K., Imawaki, S., Hirota, S., Hata, Y.: Automated fuzzy logic based skull stripping in neonatal and infantile MR images. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–7 (2010)
15.
go back to reference Hata, Y., Kobashi, S., Hirano, S., Kitagaki, H., Mori, E.: Automated segmentation of human brain mr images aided by fuzzy information granulation and fuzzy inference. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 30(3), 381–395 (2000) CrossRef Hata, Y., Kobashi, S., Hirano, S., Kitagaki, H., Mori, E.: Automated segmentation of human brain mr images aided by fuzzy information granulation and fuzzy inference. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 30(3), 381–395 (2000) CrossRef
16.
go back to reference Tolias, Y., Panas, S.: On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system. Signal Process. Lett. IEEE 5(10), 245–247 (1998) CrossRef Tolias, Y., Panas, S.: On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system. Signal Process. Lett. IEEE 5(10), 245–247 (1998) CrossRef
17.
go back to reference Mari, M., Dellepiane, S.: A segmentation method based on fuzzy topology and clustering. In: Proceedings of the 13th International Conference on Pattern Recognition, 1996, vol. 2, pp. 565–569 (1996) Mari, M., Dellepiane, S.: A segmentation method based on fuzzy topology and clustering. In: Proceedings of the 13th International Conference on Pattern Recognition, 1996, vol. 2, pp. 565–569 (1996)
18.
go back to reference Carvalho, B.M., Gau, C.J., Herman, G.T., Kong, T.Y.: Algorithms for fuzzy segmentation. Pattern Analysis & Applications 2, 73–81 (1999) Carvalho, B.M., Gau, C.J., Herman, G.T., Kong, T.Y.: Algorithms for fuzzy segmentation. Pattern Analysis & Applications 2, 73–81 (1999)
19.
go back to reference Saha, P.K., Udupa, J.K.: Fuzzy connected object delineation: axiomatic path strength definition and the case of multiple seeds. Comput. Vis. Image Underst. 83(3), 275–295 (2001) CrossRefMATH Saha, P.K., Udupa, J.K.: Fuzzy connected object delineation: axiomatic path strength definition and the case of multiple seeds. Comput. Vis. Image Underst. 83(3), 275–295 (2001) CrossRefMATH
20.
go back to reference Badura, P., Kawa, J., Czajkowska, J., Rudzki, M., Pietka, E.: Fuzzy connectedness in segmentation of medical images. In: International Conference of Fuzzy Computation Theory and Applications, pp. 486–492, October (2011) Badura, P., Kawa, J., Czajkowska, J., Rudzki, M., Pietka, E.: Fuzzy connectedness in segmentation of medical images. In: International Conference of Fuzzy Computation Theory and Applications, pp. 486–492, October (2011)
21.
go back to reference McLachlan, G., Peel, D.: Finite Mixture Model. Wiley Series in Probability and Statistics (2000) McLachlan, G., Peel, D.: Finite Mixture Model. Wiley Series in Probability and Statistics (2000)
22.
go back to reference Heo, G., Gader, P.: An extension of global fuzzy c-means using Kernel methods. In: IEEE International Conference on Fuzzy Systems, July (2010) Heo, G., Gader, P.: An extension of global fuzzy c-means using Kernel methods. In: IEEE International Conference on Fuzzy Systems, July (2010)
23.
go back to reference Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977) MathSciNetMATH Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977) MathSciNetMATH
24.
go back to reference Czajkowska, J., Bugdol, M., Pietka, E.: Kernelized fuzzy c-means method and Gaussian mixture model in unsupervised cascade clustering. In: International Conference of Information Technologies in Biomedicine, Lecture Notes in Bioinformatics, Gliwice, Poland, pp. 58–66, June (2012) Czajkowska, J., Bugdol, M., Pietka, E.: Kernelized fuzzy c-means method and Gaussian mixture model in unsupervised cascade clustering. In: International Conference of Information Technologies in Biomedicine, Lecture Notes in Bioinformatics, Gliwice, Poland, pp. 58–66, June (2012)
25.
go back to reference Siler, W., Buckley, J.J.: Fuzzy Expert Systems and Fuzzy Reasoning. Wiley, Hoboken (2005) MATH Siler, W., Buckley, J.J.: Fuzzy Expert Systems and Fuzzy Reasoning. Wiley, Hoboken (2005) MATH
26.
go back to reference Mamdani, E.: Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 121(12), 1585–1588 (1974) CrossRef Mamdani, E.: Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 121(12), 1585–1588 (1974) CrossRef
27.
go back to reference Kickert, W.J.M., Mamdani, E.H.: Analysis of a fuzzy logic controller. Fuzzy Sets Syst. 1(1), 29–44 (1978) CrossRefMATH Kickert, W.J.M., Mamdani, E.H.: Analysis of a fuzzy logic controller. Fuzzy Sets Syst. 1(1), 29–44 (1978) CrossRefMATH
28.
go back to reference Perona, P., Shiota, T., Malik, J.: Anisotropic diffusion. Geometry-Driven Diffusion in Computer Vision, pp. 73–92. Kluwer Academic Publishers, Dordrecht (1994) CrossRef Perona, P., Shiota, T., Malik, J.: Anisotropic diffusion. Geometry-Driven Diffusion in Computer Vision, pp. 73–92. Kluwer Academic Publishers, Dordrecht (1994) CrossRef
29.
go back to reference Positano, V., Santarelli, M. F., Landin, L., Benassi, A.: Nonlinear anisotropic filtering as a tool for SNR enhancement in cardiovascular MRI. In: Computers in Cardiology, pp. 707–710. IEEE (2000) Positano, V., Santarelli, M. F., Landin, L., Benassi, A.: Nonlinear anisotropic filtering as a tool for SNR enhancement in cardiovascular MRI. In: Computers in Cardiology, pp. 707–710. IEEE (2000)
30.
go back to reference Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) CrossRef Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) CrossRef
Metadata
Title
Model-Based Fuzzy System for Multimodal Image Segmentation
Author
Joanna Czajkowska
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-23392-5_11

Premium Partner