Skip to main content
Top
Published in:
Cover of the book

2023 | OriginalPaper | Chapter

1. Model Building

Authors : George A. F. Seber, Matthew R. Schofield

Published in: Estimating Presence and Abundance of Closed Populations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This introductory chapter is about fundamental ideas involved in model selection such as between a model-based or design-based approach, or a combination of both, and between a frequentist and Bayesian-type model. Hierarchical and mixture models are becoming more commonly used along with logistic and loglinear regression models involving covariates. Model selection is always present in studies, with model averaging becoming more popular. This inevitably leads to the development of specialized computational programs, of which there are many; a selection of 17 is listed. Diagnostics for models are considered, including the use of residuals. Finally, there are some comments about where we are heading with regard to the future for the subject.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Barker, R. J., Schofield, M. R., Link, W. A., & Sauer, J. R. (2018). On the reliability of N-mixture models for count data. Biometrics, 74(1), 369–377.PubMedCrossRef Barker, R. J., Schofield, M. R., Link, W. A., & Sauer, J. R. (2018). On the reliability of N-mixture models for count data. Biometrics, 74(1), 369–377.PubMedCrossRef
go back to reference Borchers, D. L., Buckland, S. T., & Zucchini, W. (2002). Estinating animal abundance: Closed populations. London: Springer-Verlag.CrossRef Borchers, D. L., Buckland, S. T., & Zucchini, W. (2002). Estinating animal abundance: Closed populations. London: Springer-Verlag.CrossRef
go back to reference Bravington, M.V., Miller, D. L,.& Hedley, S. L.(2021). Variance propagation for density surface models. Journal of Agricultural, Biological, and Environmental Statistics, 26(2), 306–323.CrossRef Bravington, M.V., Miller, D. L,.& Hedley, S. L.(2021). Variance propagation for density surface models. Journal of Agricultural, Biological, and Environmental Statistics, 26(2), 306–323.CrossRef
go back to reference Broms, K. M., Hooten, M. B., & Fitzpatrick, R. M. (2016). Model selection and assessment for multi-species occupancy models. Ecology, 97(7), 1759–1770.PubMedCrossRef Broms, K. M., Hooten, M. B., & Fitzpatrick, R. M. (2016). Model selection and assessment for multi-species occupancy models. Ecology, 97(7), 1759–1770.PubMedCrossRef
go back to reference Cleasby, I. R., & Nakagawa, S. (2011). Neglected biological patterns in the residuals: A behavioural ecologist’s guide to co-operating with heteroscedasticity. Behavioral Ecology and Sociobiology, 65(12), 2361–2372.CrossRef Cleasby, I. R., & Nakagawa, S. (2011). Neglected biological patterns in the residuals: A behavioural ecologist’s guide to co-operating with heteroscedasticity. Behavioral Ecology and Sociobiology, 65(12), 2361–2372.CrossRef
go back to reference Conn, P. B. (2012). hierarchicalDS: Functions for performing hierarchical analysis of distance sampling data. R package version 2.01. Conn, P. B. (2012). hierarchicalDS: Functions for performing hierarchical analysis of distance sampling data. R package version 2.01.
go back to reference Conn, P. B., Johnson, D. S., Williams, P. J. Melin, S. R., & Hooten, M. B. (2018). A guide to Bayesian model checking for ecologists. Ecological Monographs, 88(4), 526–542.CrossRef Conn, P. B., Johnson, D. S., Williams, P. J. Melin, S. R., & Hooten, M. B. (2018). A guide to Bayesian model checking for ecologists. Ecological Monographs, 88(4), 526–542.CrossRef
go back to reference Cormack, R. M. (1989). Log-Linear models for capture-recapture. Biometrics, 45(2), 395–413.CrossRef Cormack, R. M. (1989). Log-Linear models for capture-recapture. Biometrics, 45(2), 395–413.CrossRef
go back to reference Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V., & Wikle, C. K. (2009). Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling. Ecological Applications, 19(3), 553–570.PubMedCrossRef Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V., & Wikle, C. K. (2009). Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling. Ecological Applications, 19(3), 553–570.PubMedCrossRef
go back to reference Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge, UK: Cambridge University Press.CrossRef Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge, UK: Cambridge University Press.CrossRef
go back to reference Dennis, E. B., Morgan, B. J. T., & Ridout, M. S. (2015). Computational aspects of N-mixture models. Biometrics, 71(1), 237–246.PubMedCrossRef Dennis, E. B., Morgan, B. J. T., & Ridout, M. S. (2015). Computational aspects of N-mixture models. Biometrics, 71(1), 237–246.PubMedCrossRef
go back to reference Denwood, M. J. (2016). runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. Journal of Statistical Software, 71(1), 1–25. Denwood, M. J. (2016). runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. Journal of Statistical Software, 71(1), 1–25.
go back to reference Dey, S., Delampady, M., & Gopalaswamy, A. M. (2019). Bayesian model selection for spatial capture–recapture models. Ecology and Evolution, 9(20), 11569–11583.PubMedPubMedCentralCrossRef Dey, S., Delampady, M., & Gopalaswamy, A. M. (2019). Bayesian model selection for spatial capture–recapture models. Ecology and Evolution, 9(20), 11569–11583.PubMedPubMedCentralCrossRef
go back to reference Dormann, C. F., Calabrese, J. M., & et al. (2018). Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecological Monographs, 88(4), 485–504. Dormann, C. F., Calabrese, J. M., & et al. (2018). Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecological Monographs, 88(4), 485–504.
go back to reference Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.CrossRef Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.CrossRef
go back to reference Fewster, R. M. (2011). Variance estimation for systematic designs in spatial surveys. Biometrics, 67(4), 1518–1531.PubMedCrossRef Fewster, R. M. (2011). Variance estimation for systematic designs in spatial surveys. Biometrics, 67(4), 1518–1531.PubMedCrossRef
go back to reference Fiske, I. J., & Chandler, R. B. (2011). Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43, 1–23.CrossRef Fiske, I. J., & Chandler, R. B. (2011). Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43, 1–23.CrossRef
go back to reference Fletcher, D. (2018). Model averaging. Heidelberg: Springer Briefs in Statistics.CrossRef Fletcher, D. (2018). Model averaging. Heidelberg: Springer Briefs in Statistics.CrossRef
go back to reference Galipaud, M., Gillingham, M. A. F, David, M., & Dechaume-Moncharmont, F.-X. (2014). Ecologists overestimate the importance of predictor variables in model averaging: A plea for cautious interpretations. Methods in Ecology and Evolution, 5(10), 983–991.CrossRef Galipaud, M., Gillingham, M. A. F, David, M., & Dechaume-Moncharmont, F.-X. (2014). Ecologists overestimate the importance of predictor variables in model averaging: A plea for cautious interpretations. Methods in Ecology and Evolution, 5(10), 983–991.CrossRef
go back to reference Gelfand, A. E., & Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. Journal of the Royal Statistical Society: Series B (Methodological), 56(3), 501–514. Gelfand, A. E., & Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. Journal of the Royal Statistical Society: Series B (Methodological), 56(3), 501–514.
go back to reference Gopalaswamy, A. M., Royle, J. A., Hines, J. E., & et al. (2012). Program SPACECAP: Software for estimating animal density using spatially explicit capture-recapture models. Methods in Ecology and Evolution, 3(6), 1067–1072. Gopalaswamy, A. M., Royle, J. A., Hines, J. E., & et al. (2012). Program SPACECAP: Software for estimating animal density using spatially explicit capture-recapture models. Methods in Ecology and Evolution, 3(6), 1067–1072.
go back to reference Guisan, A., Edwards, T. C., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecological Modelling, 157(2), 89–100.CrossRef Guisan, A., Edwards, T. C., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecological Modelling, 157(2), 89–100.CrossRef
go back to reference Guisan, A., Lehmann, A., & et al. (2006). Making better biogeographical predictions of species’ distributions. Journal of Applied Ecology, 43(3), 386–392. Guisan, A., Lehmann, A., & et al. (2006). Making better biogeographical predictions of species’ distributions. Journal of Applied Ecology, 43(3), 386–392.
go back to reference Guisan, A., & Rahbek, C. (2011). SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38(8), 1433–1444.CrossRef Guisan, A., & Rahbek, C. (2011). SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 38(8), 1433–1444.CrossRef
go back to reference Held, L., & Sabanés Bové, D. (2020). Likelihood and Bayesian inference with applications in biology and medicine (2nd ed.). Springer Nature. Held, L., & Sabanés Bové, D. (2020). Likelihood and Bayesian inference with applications in biology and medicine (2nd ed.). Springer Nature.
go back to reference Hooten, M. B., & Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists Ecological Monographs, 85(1), 3–28.CrossRef Hooten, M. B., & Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists Ecological Monographs, 85(1), 3–28.CrossRef
go back to reference Johnson, D. S. (2012). stocc: Fit a spatial occupancy model via Gibbs sampling. R package version 1.0-7. Johnson, D. S. (2012). stocc: Fit a spatial occupancy model via Gibbs sampling. R package version 1.0-7.
go back to reference Johnson, D. S., Laake, J., & VerHoef, J. (2014). DSpat: Spatial modelling for distance sampling data. R package version 0.1.6. Johnson, D. S., Laake, J., & VerHoef, J. (2014). DSpat: Spatial modelling for distance sampling data. R package version 0.1.6.
go back to reference Kéry, M. (2010). Introduction to winbugs for Ecologists.—a Bayesian approach to regression, ANOVA, mixed models and related analyses. Burlington: Academic Press. Kéry, M. (2010). Introduction to winbugs for Ecologists.—a Bayesian approach to regression, ANOVA, mixed models and related analyses. Burlington: Academic Press.
go back to reference Kéry, M. (2018). Identifiability in N-mixture models: A large-scale screening test with bird data. Ecology, 99(2), 281–288.PubMedCrossRef Kéry, M. (2018). Identifiability in N-mixture models: A large-scale screening test with bird data. Ecology, 99(2), 281–288.PubMedCrossRef
go back to reference Kéry, M., & Royle, J. A. (2016). Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS. Prelude and static models (Vol. 1). London, UK: Academic Press. Kéry, M., & Royle, J. A. (2016). Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS. Prelude and static models (Vol. 1). London, UK: Academic Press.
go back to reference Kéry, M., & Royle, J. A. (2020). Applied herarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS. Dynamic and advanced models (Vol. 2). Cambridge, Massachusetts: Academic Press. Kéry, M., & Royle, J. A. (2020). Applied herarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS. Dynamic and advanced models (Vol. 2). Cambridge, Massachusetts: Academic Press.
go back to reference Knape, J., Arlt, D., & et al. (2018) Sensitivity of binomial N-mixture models to overdispersion: The importance of assessing model fit. Methods of Ecological Evolution, 9(10), 2102–2114. Knape, J., Arlt, D., & et al. (2018) Sensitivity of binomial N-mixture models to overdispersion: The importance of assessing model fit. Methods of Ecological Evolution, 9(10), 2102–2114.
go back to reference Lee, A. J., & Seber, G. A. F. (2001). Residuals. Encyclopedia of Environmetrics, 1770–1775. In A. El-Shaarawi (Ed.). Wiley. Lee, A. J., & Seber, G. A. F. (2001). Residuals. Encyclopedia of Environmetrics, 1770–1775. In A. El-Shaarawi (Ed.). Wiley.
go back to reference Link, W. A., & Barker, R. J. (2006), Model weights and the foundations of multimodel inference. Ecology, 87(10), 2626–2635.PubMedCrossRef Link, W. A., & Barker, R. J. (2006), Model weights and the foundations of multimodel inference. Ecology, 87(10), 2626–2635.PubMedCrossRef
go back to reference Link, W. A., & Barker, R. J. (2010). Bayesian inference: With ecological applications. San Diego, USA: Academic Press. Link, W. A., & Barker, R. J. (2010). Bayesian inference: With ecological applications. San Diego, USA: Academic Press.
go back to reference Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2013). The BUGS book—a practical introduction to Bayesian analysis. CRC Press, Chapman and Hall. Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2013). The BUGS book—a practical introduction to Bayesian analysis. CRC Press, Chapman and Hall.
go back to reference Manly, B. F. J. (1997). Randomization, bootstrap and Monte Carlo methods in biology (2nd ed.). London: Chapman & Hall. Manly, B. F. J. (1997). Randomization, bootstrap and Monte Carlo methods in biology (2nd ed.). London: Chapman & Hall.
go back to reference McDonald, T., R. Nielson, J. Griswald, & McCann, P. (2012). Rdistance: Distance sampling analyses. R package version 1.1. McDonald, T., R. Nielson, J. Griswald, & McCann, P. (2012). Rdistance: Distance sampling analyses. R package version 1.1.
go back to reference Millar, R. B. (2009). Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes’ factors. Biometrics, 65(3), 962–969.PubMedCrossRef Millar, R. B. (2009). Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes’ factors. Biometrics, 65(3), 962–969.PubMedCrossRef
go back to reference Miller, D. A. W., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The recent past and promising future for data integration methods to estimate species’ distributions. Methods in Ecology and Evolution, 10(1), 22–37.CrossRef Miller, D. A. W., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The recent past and promising future for data integration methods to estimate species’ distributions. Methods in Ecology and Evolution, 10(1), 22–37.CrossRef
go back to reference Miller, D. L., Rexstad, E., Burt, L., Bravington, M. V., & Hedley, S. (2014). DSM: Density surface modelling of distance sampling data. Rpackage version 2.2.3. Miller, D. L., Rexstad, E., Burt, L., Bravington, M. V., & Hedley, S. (2014). DSM: Density surface modelling of distance sampling data. Rpackage version 2.2.3.
go back to reference Miller, D. L., Rexstad, E., Thomas, L., Marshall, L., & Laake, J. L. (2019). Distance Sampling in R. Journal of Statistical Software, 89(1), 1–28.CrossRef Miller, D. L., Rexstad, E., Thomas, L., Marshall, L., & Laake, J. L. (2019). Distance Sampling in R. Journal of Statistical Software, 89(1), 1–28.CrossRef
go back to reference Oedekoven, C. S., King, R., Buckland, S. T., Mackenzie, M. L., Evans, K. O., & Burger, Jr., L.W. (2016). Using hierarchical centering to facilitate a reversible jump MCMC algorithm for random effects models. Computational Statistics and Data Analysis, 98, 79–90.CrossRef Oedekoven, C. S., King, R., Buckland, S. T., Mackenzie, M. L., Evans, K. O., & Burger, Jr., L.W. (2016). Using hierarchical centering to facilitate a reversible jump MCMC algorithm for random effects models. Computational Statistics and Data Analysis, 98, 79–90.CrossRef
go back to reference O’Hara, R. B., & Sillanpää, M. J. (2009). A review of Bayesian variable selection methods: What, how and which. Bayesian Analysis, 4(1), 85–117. O’Hara, R. B., & Sillanpää, M. J. (2009). A review of Bayesian variable selection methods: What, how and which. Bayesian Analysis, 4(1), 85–117.
go back to reference Otis, D. L., Burnham, K. P., White, G. C., & Anderson, D. R. (1978). Statistical inference from capture data on closed animal populations. Wildlife Monographs, 62, 1–135. Otis, D. L., Burnham, K. P., White, G. C., & Anderson, D. R. (1978). Statistical inference from capture data on closed animal populations. Wildlife Monographs, 62, 1–135.
go back to reference Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.CrossRef Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.CrossRef
go back to reference Seber, G. A, F. & Lee, A. J. (2003). Linear Regression, 2nd edit., New York: Wiley. Seber, G. A, F. & Lee, A. J. (2003). Linear Regression, 2nd edit., New York: Wiley.
go back to reference Seber, G. A. F., & Schofield, M. R. (2019). Capture-recapture: Parameter estimation for open animal populations. Switzerland: Springer Nature.CrossRef Seber, G. A. F., & Schofield, M. R. (2019). Capture-recapture: Parameter estimation for open animal populations. Switzerland: Springer Nature.CrossRef
go back to reference Stanley, T. R., & Burnham, K. P. (1999). A closure test for time-specific capture-recapture data. Environmental and Ecological Statistics, 6(2), 197–209.CrossRef Stanley, T. R., & Burnham, K. P. (1999). A closure test for time-specific capture-recapture data. Environmental and Ecological Statistics, 6(2), 197–209.CrossRef
go back to reference Tenan, S., O’Hara, R. B., Hendriks, I., & Tavecchia, G. (2014). Bayesian model selection: The steepest mountain to climb. Ecological Modelling, 283, 62–69.CrossRef Tenan, S., O’Hara, R. B., Hendriks, I., & Tavecchia, G. (2014). Bayesian model selection: The steepest mountain to climb. Ecological Modelling, 283, 62–69.CrossRef
go back to reference Turek, D., Milleret, C., & et al. (2021). Efficient estimation of large-scale spatial capture–recapture models. Ecosphere, 12(2), e03385. Turek, D., Milleret, C., & et al. (2021). Efficient estimation of large-scale spatial capture–recapture models. Ecosphere, 12(2), e03385.
go back to reference Vieilledent, G., Merow, C., & et al. (2019). Hierarchical Bayesian species distribution models with the hSDM R Package. Vieilledent, G., Merow, C., & et al. (2019). Hierarchical Bayesian species distribution models with the hSDM R Package.
go back to reference Watanabe, S. (2013). A widely applicable Bayesian information criterion. (2013). Journal of Machine Learning Research, 14(1), 867–897. Watanabe, S. (2013). A widely applicable Bayesian information criterion. (2013). Journal of Machine Learning Research, 14(1), 867–897.
go back to reference Wolter, K. M. (1984). An investigation of some estimators of variance for systematic sampling. Journal of the American Statistical Association, 79(388), 781–790.CrossRef Wolter, K. M. (1984). An investigation of some estimators of variance for systematic sampling. Journal of the American Statistical Association, 79(388), 781–790.CrossRef
go back to reference Wolter, K. M. (2007). Introduction to variance estimation (2nd ed.) New York: Springer. Wolter, K. M. (2007). Introduction to variance estimation (2nd ed.) New York: Springer.
go back to reference Zemanova, M. A. (2020). Towards more compassionate wildlife research through the 3Rs principles: Moving from invasive to non-invasive methods. Wildlife Biology, 2021(1), 1–17. Zemanova, M. A. (2020). Towards more compassionate wildlife research through the 3Rs principles: Moving from invasive to non-invasive methods. Wildlife Biology, 2021(1), 1–17.
go back to reference Zipkin, E. F., & Saunders, S. P. (2018). Synthesizing multiple data types for biological conservation using integrated population models. Biological Conservation, 217, 240–250.CrossRef Zipkin, E. F., & Saunders, S. P. (2018). Synthesizing multiple data types for biological conservation using integrated population models. Biological Conservation, 217, 240–250.CrossRef
Metadata
Title
Model Building
Authors
George A. F. Seber
Matthew R. Schofield
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-39834-6_1

Premium Partner