Skip to main content
Top
Published in:

11-06-2024 | Original Paper

Model-free control for variable-speed wind energy conversion systems based on power tracking

Authors: Billel Bouchemal, Mohamed Chemachema

Published in: Electrical Engineering | Issue 1/2025

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article discusses the critical role of wind turbines in renewable energy and introduces a model-free control strategy for variable-speed wind energy conversion systems. This innovative approach aims to maximize power capture and ensure stable operation, even in the face of modeling uncertainties and external disturbances. The study highlights the challenges posed by the nonlinear aerodynamics and unpredictable wind conditions, emphasizing the need for adaptive and robust control methods. The proposed model-free controller, based on an intelligent PID framework, simplifies the design process and offers resilience against parametric uncertainties. Extensive simulations on the NREL 1.5MW wind turbine FAST simulator demonstrate the controller's effectiveness, showcasing its ability to accurately track maximum power availability. The article concludes by underscoring the viability and superior performance of the model-free control approach compared to industry-standard methods, making it a valuable contribution to the field of wind energy conversion systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
1.
go back to reference Sebestyén V (2021) Renewable and sustainable energy reviews: environmental impact networks of renewable energy power plants. Renew Sustain Energy Rev 1(151):111626CrossRefMATH Sebestyén V (2021) Renewable and sustainable energy reviews: environmental impact networks of renewable energy power plants. Renew Sustain Energy Rev 1(151):111626CrossRefMATH
2.
go back to reference Bose BK (2010) Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Ind Electron Mag 4(1):6–17CrossRefMATH Bose BK (2010) Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Ind Electron Mag 4(1):6–17CrossRefMATH
3.
go back to reference Ortega-Vazquez MA, Kirschen DS (2008) Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE Trans Power Syst 24(1):114–124CrossRef Ortega-Vazquez MA, Kirschen DS (2008) Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE Trans Power Syst 24(1):114–124CrossRef
4.
go back to reference Yin X, Zhang W, Zhao X (2019) Current status and future prospects of continuously variable speed wind turbines: a systematic review. Mech Syst Signal Process 1(120):326–340CrossRefMATH Yin X, Zhang W, Zhao X (2019) Current status and future prospects of continuously variable speed wind turbines: a systematic review. Mech Syst Signal Process 1(120):326–340CrossRefMATH
5.
go back to reference Geng H, Yang G (2009) Robust pitch controller for output power levelling of variable-speed variable-pitch wind turbine generator systems. IET Renew Power Gener 3(2):168–179CrossRefMATH Geng H, Yang G (2009) Robust pitch controller for output power levelling of variable-speed variable-pitch wind turbine generator systems. IET Renew Power Gener 3(2):168–179CrossRefMATH
6.
go back to reference Şahin AD (2004) Progress and recent trends in wind energy. Prog Energy Combust Sci 30(5):501–543CrossRefMATH Şahin AD (2004) Progress and recent trends in wind energy. Prog Energy Combust Sci 30(5):501–543CrossRefMATH
7.
go back to reference Stol K, Rigney B, Balas M (2000) Disturbance accommodating control of a variable-speed turbine using a symbolic dynamics structural model. In: 2000 ASME Wind Energy Symposium, p 29 Stol K, Rigney B, Balas M (2000) Disturbance accommodating control of a variable-speed turbine using a symbolic dynamics structural model. In: 2000 ASME Wind Energy Symposium, p 29
8.
go back to reference Saidi Y, Mezouar A, Miloud Y, Kerrouche KD, Brahmi B, Benmahdjoub MA (2020) Advanced non-linear backstepping control design for variable speed wind turbine power maximization based on tip-speed-ratio approach during partial load operation. Int J Dyn Control 8:615–628CrossRef Saidi Y, Mezouar A, Miloud Y, Kerrouche KD, Brahmi B, Benmahdjoub MA (2020) Advanced non-linear backstepping control design for variable speed wind turbine power maximization based on tip-speed-ratio approach during partial load operation. Int J Dyn Control 8:615–628CrossRef
9.
go back to reference Dehghan S, Amjady N (2015) Robust transmission and energy storage expansion planning in wind farm-integrated power systems considering transmission switching. IEEE Trans Sust Energy 7(2):765–774CrossRefMATH Dehghan S, Amjady N (2015) Robust transmission and energy storage expansion planning in wind farm-integrated power systems considering transmission switching. IEEE Trans Sust Energy 7(2):765–774CrossRefMATH
10.
go back to reference Yin XX, Lin YG, Li W, Gu YJ, Wang XJ, Lei PF (2015) Design, modeling and implementation of a novel pitch angle control system for wind turbine. Renew Energy 1(81):599–608CrossRefMATH Yin XX, Lin YG, Li W, Gu YJ, Wang XJ, Lei PF (2015) Design, modeling and implementation of a novel pitch angle control system for wind turbine. Renew Energy 1(81):599–608CrossRefMATH
11.
go back to reference Jauch C, Islam SM, Sørensen P, Jensen BB (2007) Design of a wind turbine pitch angle controller for power system stabilisation. Renew Energy 32(14):2334–2349CrossRefMATH Jauch C, Islam SM, Sørensen P, Jensen BB (2007) Design of a wind turbine pitch angle controller for power system stabilisation. Renew Energy 32(14):2334–2349CrossRefMATH
12.
go back to reference Johnson KE, Pao LY, Balas MJ, Fingersh LJ (2006) Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture. IEEE Control Syst Mag 26(3):70–81MathSciNetCrossRefMATH Johnson KE, Pao LY, Balas MJ, Fingersh LJ (2006) Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture. IEEE Control Syst Mag 26(3):70–81MathSciNetCrossRefMATH
13.
go back to reference Xiao Y, Li Y, Rotea M (2016) Experimental evaluation of extremum seeking based region-2 controller for CART3 wind turbine. In: 34th Wind Energy Symposium, p 1737 Xiao Y, Li Y, Rotea M (2016) Experimental evaluation of extremum seeking based region-2 controller for CART3 wind turbine. In: 34th Wind Energy Symposium, p 1737
14.
go back to reference Rotea MA (2017) Logarithmic power feedback for extremum seeking control of wind turbines. IFAC-Papers Line 50(1):4504–4509CrossRefMATH Rotea MA (2017) Logarithmic power feedback for extremum seeking control of wind turbines. IFAC-Papers Line 50(1):4504–4509CrossRefMATH
15.
go back to reference Heier S (2014) Grid integration of wind energy: onshore and offshore conversion systems. Wiley, HobokenCrossRefMATH Heier S (2014) Grid integration of wind energy: onshore and offshore conversion systems. Wiley, HobokenCrossRefMATH
16.
go back to reference Rex AH, Johnson KE (2009) Methods for controlling a wind turbine system with a continuously variable transmission in region. J Solar Energy Eng 131(3):031012CrossRef Rex AH, Johnson KE (2009) Methods for controlling a wind turbine system with a continuously variable transmission in region. J Solar Energy Eng 131(3):031012CrossRef
17.
go back to reference Bianchi FD, De Battista H, Mantz RJ (2007) Wind turbine control systems: principles, modelling and gain scheduling design. Springer, LondonCrossRefMATH Bianchi FD, De Battista H, Mantz RJ (2007) Wind turbine control systems: principles, modelling and gain scheduling design. Springer, LondonCrossRefMATH
18.
go back to reference Yang Z, Li Y, Seem J (2012). Model predictive control for wind turbine load reduction under wake meandering of upstream wind turbines. In: 2012 American Control Conference (ACC), pp 3008–3013. IEEE Yang Z, Li Y, Seem J (2012). Model predictive control for wind turbine load reduction under wake meandering of upstream wind turbines. In: 2012 American Control Conference (ACC), pp 3008–3013. IEEE
19.
go back to reference Khalid M, Savkin AV (2010) A model predictive control approach to the problem of wind power smoothing with controlled battery storage. Renew Energy 35(7):1520–1526CrossRefMATH Khalid M, Savkin AV (2010) A model predictive control approach to the problem of wind power smoothing with controlled battery storage. Renew Energy 35(7):1520–1526CrossRefMATH
20.
go back to reference Hur S, Leithead W (2017) Model predictive and linear quadratic gaussian control of a wind turbine. Opt Control Appl Methods 38(1):88–111MathSciNetCrossRefMATH Hur S, Leithead W (2017) Model predictive and linear quadratic gaussian control of a wind turbine. Opt Control Appl Methods 38(1):88–111MathSciNetCrossRefMATH
21.
go back to reference Ayrir W, Ourahou M, El Hassouni B, Haddi A (2018) Direct torque control improvement of a variable speed DFIG based on a fuzzy inference system. Math Comput Simul 167:308MathSciNetCrossRefMATH Ayrir W, Ourahou M, El Hassouni B, Haddi A (2018) Direct torque control improvement of a variable speed DFIG based on a fuzzy inference system. Math Comput Simul 167:308MathSciNetCrossRefMATH
22.
go back to reference Aissaoui AG, Tahour A, Essounbouli N, Nollet F, Abid M, Chergui MI (2013) A Fuzzy-PI control to extract an optimal power from wind turbine. Energy Convers Manage 65:688–696CrossRefMATH Aissaoui AG, Tahour A, Essounbouli N, Nollet F, Abid M, Chergui MI (2013) A Fuzzy-PI control to extract an optimal power from wind turbine. Energy Convers Manage 65:688–696CrossRefMATH
23.
go back to reference Fragoso S, Garrido J, Vázquez F, Morilla F (2017) Comparative analysis of decoupling control methodologies and h∞ multivariable robust control for variable-speed, variable-pitch wind turbines: application to a lab-scale wind turbine. Sustainability 9(5):713CrossRefMATH Fragoso S, Garrido J, Vázquez F, Morilla F (2017) Comparative analysis of decoupling control methodologies and h∞ multivariable robust control for variable-speed, variable-pitch wind turbines: application to a lab-scale wind turbine. Sustainability 9(5):713CrossRefMATH
24.
go back to reference Østergaard KZ (2008) Robust, gain-scheduled control of wind turbines Ph.D. thesis Automation and Control, Department of Electronic Systems, Aalborg University Østergaard KZ (2008) Robust, gain-scheduled control of wind turbines Ph.D. thesis Automation and Control, Department of Electronic Systems, Aalborg University
25.
go back to reference Kazmi SMR, Goto H, Guo H-J, Ichinokura O (2011) A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems. IEEE Trans Ind Electron 58(1):29–36CrossRefMATH Kazmi SMR, Goto H, Guo H-J, Ichinokura O (2011) A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems. IEEE Trans Ind Electron 58(1):29–36CrossRefMATH
26.
go back to reference Muhando EB, Senjyu T, Yona A, Kinjo H, Funabashi T (2007) Disturbance rejection by dual pitch control and self-tuning regulator for wind turbine generator parametric uncertainty compensation. IET Control Theory Appl 1(5):1431–1440CrossRef Muhando EB, Senjyu T, Yona A, Kinjo H, Funabashi T (2007) Disturbance rejection by dual pitch control and self-tuning regulator for wind turbine generator parametric uncertainty compensation. IET Control Theory Appl 1(5):1431–1440CrossRef
27.
28.
go back to reference Chemachema M, Belarbi K (2007) Robust direct adaptive controller for a class of nonlinear systems based on neural networks and fuzzy logic systems. Int J Artif Intell Tools 16(03):553–560CrossRefMATH Chemachema M, Belarbi K (2007) Robust direct adaptive controller for a class of nonlinear systems based on neural networks and fuzzy logic systems. Int J Artif Intell Tools 16(03):553–560CrossRefMATH
29.
go back to reference Chemachema M, Belarbi K (2010) State feedback linearisation-based neural network adaptive controller for a class of uncertain SISO non-linear systems. Int J Model Ident Control 11(1–2):44–51CrossRefMATH Chemachema M, Belarbi K (2010) State feedback linearisation-based neural network adaptive controller for a class of uncertain SISO non-linear systems. Int J Model Ident Control 11(1–2):44–51CrossRefMATH
30.
go back to reference Chemachema M (2012) Output feedback direct adaptive neural network control for uncertain SISO nonlinear systems using a fuzzy estimator of the control error. Neural Netw 1(36):25–34CrossRefMATH Chemachema M (2012) Output feedback direct adaptive neural network control for uncertain SISO nonlinear systems using a fuzzy estimator of the control error. Neural Netw 1(36):25–34CrossRefMATH
31.
go back to reference Chemachema M, Belarbi K (2011) Direct adaptive neural network controller for a class of nonlinear systems based on fuzzy estimator of the control error. Int J Syst Sci 42(7):1165–1173MathSciNetCrossRefMATH Chemachema M, Belarbi K (2011) Direct adaptive neural network controller for a class of nonlinear systems based on fuzzy estimator of the control error. Int J Syst Sci 42(7):1165–1173MathSciNetCrossRefMATH
32.
go back to reference Meng W, Yang Q, Ying Y, Sun Y, Yang Z, Sun Y (2013) Adaptive power capture control of variable-speed wind energy conversion systems with guaranteed transient and steady-state performance. IEEE Trans Energy Convers 28(3):716–725CrossRefMATH Meng W, Yang Q, Ying Y, Sun Y, Yang Z, Sun Y (2013) Adaptive power capture control of variable-speed wind energy conversion systems with guaranteed transient and steady-state performance. IEEE Trans Energy Convers 28(3):716–725CrossRefMATH
33.
go back to reference Bounemeur A, Chemachema M (2023) General fuzzy adaptive fault-tolerant control based on Nussbaum-type function with additive and multiplicative sensor and state-dependent actuator faults. Fuzzy Sets Syst 468:108616MathSciNetCrossRefMATH Bounemeur A, Chemachema M (2023) General fuzzy adaptive fault-tolerant control based on Nussbaum-type function with additive and multiplicative sensor and state-dependent actuator faults. Fuzzy Sets Syst 468:108616MathSciNetCrossRefMATH
34.
go back to reference Bounemeur A, Chemachema M (2024) Optimal adaptive fuzzy fault-tolerant control applied on a quadrotor attitude stabilization based on particle swarm optimization. In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 238(4), pp 704–19 Bounemeur A, Chemachema M (2024) Optimal adaptive fuzzy fault-tolerant control applied on a quadrotor attitude stabilization based on particle swarm optimization. In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 238(4), pp 704–19
35.
go back to reference Song YD, Dhinakaran B, Bao XY (2000) Variable speed control of wind turbines using nonlinear and adaptive algorithms. J Wind Eng Ind Aerodyn 85(3):293–308CrossRefMATH Song YD, Dhinakaran B, Bao XY (2000) Variable speed control of wind turbines using nonlinear and adaptive algorithms. J Wind Eng Ind Aerodyn 85(3):293–308CrossRefMATH
36.
go back to reference Beltran B, Ahmed-Ali T, Benbouzid ME (2008) High-order sliding-mode control of variable-speed wind turbines. IEEE Trans Industr Electron 56(9):3314–3321CrossRefMATH Beltran B, Ahmed-Ali T, Benbouzid ME (2008) High-order sliding-mode control of variable-speed wind turbines. IEEE Trans Industr Electron 56(9):3314–3321CrossRefMATH
39.
go back to reference Liu X, Han Y, Wang C (2017) Second-order sliding mode control for power optimisation of DFIG-based variable speed wind turbine. IET Renew Power Gener 11(2):408–418CrossRefMATH Liu X, Han Y, Wang C (2017) Second-order sliding mode control for power optimisation of DFIG-based variable speed wind turbine. IET Renew Power Gener 11(2):408–418CrossRefMATH
42.
go back to reference Sira-Ramírez H, Rodríguez CG, Romero JC, Juárez AL (2014) Algebraic identification and estimation methods in feedback control systems. Wiley, HobokenCrossRefMATH Sira-Ramírez H, Rodríguez CG, Romero JC, Juárez AL (2014) Algebraic identification and estimation methods in feedback control systems. Wiley, HobokenCrossRefMATH
Metadata
Title
Model-free control for variable-speed wind energy conversion systems based on power tracking
Authors
Billel Bouchemal
Mohamed Chemachema
Publication date
11-06-2024
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 1/2025
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02514-5