Skip to main content
Top

2018 | OriginalPaper | Chapter

Model Iterative Airway Pressure Reconstruction During Mechanical Ventilation Asynchrony: Shapes and Sizes of Reconstruction

Authors : Chee Pin Tan, Yeong Shiong Chiew, J. Geoffrey Chase, Yeong Woei Chiew, Christopher Pretty, Thomas Desaive, Azrina Md Ralib, Mohd Basri Mat

Published in: 2nd International Conference for Innovation in Biomedical Engineering and Life Sciences

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Model-based methods estimating patient-specific respiratory mechanics may help intensive care clinicians in setting optimal ventilation parameters. However, these methods rely heavily on the quality of measured airway pressure and flow profiles for reliable respiratory mechanics estimation. Thus, asynchronous and/or spontaneous breathing cycles that do not follow a typical passive airway profile affect the performance and reliability of model-based methods. In this study, a model iterative airway pressure reconstruction method is presented. It aims to reconstruct a measured airway pressure affected by asynchronous breathing iteratively, trying to match the profile of passive breaths with no asynchrony or spontaneous breathing effort. Thus, reducing the variability of identified respiratory mechanics over short time periods where changes would be due only to asynchrony or spontaneous artefacts. A total of 2000 breathing cycles from mechanically ventilated patients with known asynchronous breathing were analyzed. It was found that this method is capable of reconstructing an airway pressure free from asynchronous or spontaneous breathing effort. This work focuses on several cases, detailing how iterative pressure reconstruction method performs under different cases, as well as its limitation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kretschmer, J., Wahl, A., Moller, K.: Dynamically generated models for medical decision support systems. Comput. Biol. Med. 41(10), 899–907 (2011)CrossRef Kretschmer, J., Wahl, A., Moller, K.: Dynamically generated models for medical decision support systems. Comput. Biol. Med. 41(10), 899–907 (2011)CrossRef
2.
go back to reference Penning, S., et al.: First pilot trial of the STAR-Liege protocol for tight glycemic control in critically ill patients. Comput. Methods Programs Biomed. 2012(0) (2012) Penning, S., et al.: First pilot trial of the STAR-Liege protocol for tight glycemic control in critically ill patients. Comput. Methods Programs Biomed. 2012(0) (2012)
3.
go back to reference Tawhai, M.H., Hoffman, E.A., Lin, C.-L.: The lung physiome: merging imaging-based measures with predictive computational models. Wiley Interdisc. Rev. Syst. Biol. Med. 1(1), 61–72 (2009)CrossRef Tawhai, M.H., Hoffman, E.A., Lin, C.-L.: The lung physiome: merging imaging-based measures with predictive computational models. Wiley Interdisc. Rev. Syst. Biol. Med. 1(1), 61–72 (2009)CrossRef
4.
go back to reference Chiew, Y., et al.: Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients. Pilot Feasib. Stud. 1(1), 9 (2015)CrossRef Chiew, Y., et al.: Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients. Pilot Feasib. Stud. 1(1), 9 (2015)CrossRef
5.
go back to reference Rees, S., et al.: Using physiological models and decision theory for selecting appropriate ventilator settings. J. Clin. Monit. Comput. 20(6), 421–429 (2006)CrossRef Rees, S., et al.: Using physiological models and decision theory for selecting appropriate ventilator settings. J. Clin. Monit. Comput. 20(6), 421–429 (2006)CrossRef
6.
go back to reference Hodgson, C., et al.: A randomised controlled trial of an open lung strategy with staircase recruitment, titrated PEEP and targeted low airway pressures in patients with acute respiratory distress syndrome. Crit. Care 15(3), R133 (2011)CrossRef Hodgson, C., et al.: A randomised controlled trial of an open lung strategy with staircase recruitment, titrated PEEP and targeted low airway pressures in patients with acute respiratory distress syndrome. Crit. Care 15(3), R133 (2011)CrossRef
7.
go back to reference Albaiceta, G.M., et al.: Application of continuous positive airway pressure to trace static pressure-volume curves of the respiratory system. Crit. Care Med. 31(10), 2514–2519 (2003)CrossRef Albaiceta, G.M., et al.: Application of continuous positive airway pressure to trace static pressure-volume curves of the respiratory system. Crit. Care Med. 31(10), 2514–2519 (2003)CrossRef
8.
go back to reference Stahl, C.A., et al.: Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit. Care Med. 34, 2090–2098 (2006)CrossRef Stahl, C.A., et al.: Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit. Care Med. 34, 2090–2098 (2006)CrossRef
9.
go back to reference de Wit, M., et al.: Observational study of patient-ventilator asynchrony and relationship to sedation level. J. Crit. Care 24(1), 74–80 (2009)CrossRef de Wit, M., et al.: Observational study of patient-ventilator asynchrony and relationship to sedation level. J. Crit. Care 24(1), 74–80 (2009)CrossRef
10.
go back to reference Major, V., et al.: Respiratory mechanics assessment for reverse-triggered breathing cycles using pressure reconstruction. Biomed. Signal Process. Control 23, 1–9 (2016)CrossRef Major, V., et al.: Respiratory mechanics assessment for reverse-triggered breathing cycles using pressure reconstruction. Biomed. Signal Process. Control 23, 1–9 (2016)CrossRef
11.
go back to reference Szlavecz, A., et al.: The clinical utilisation of respiratory elastance software (CURE soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management. Biomed. Eng. OnLine 13(1), 140 (2014)CrossRef Szlavecz, A., et al.: The clinical utilisation of respiratory elastance software (CURE soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management. Biomed. Eng. OnLine 13(1), 140 (2014)CrossRef
12.
go back to reference Langdon, R., et al.: Implementation of a non-linear autoregressive model with modified Gauss-Newton parameter identification to determine pulmonary mechanics of respiratory patients that are intermittently resisting ventilator flow patterns. IFAC-PapersOnLine 48(20), 354–359 (2015)CrossRef Langdon, R., et al.: Implementation of a non-linear autoregressive model with modified Gauss-Newton parameter identification to determine pulmonary mechanics of respiratory patients that are intermittently resisting ventilator flow patterns. IFAC-PapersOnLine 48(20), 354–359 (2015)CrossRef
13.
go back to reference Strøm, T., Martinussen, T., Toft, P.: A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet 375(9713), 475–480 (2010)CrossRef Strøm, T., Martinussen, T., Toft, P.: A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet 375(9713), 475–480 (2010)CrossRef
14.
go back to reference Kannangara, D.O., et al.: Estimating the true respiratory mechanics during asynchronous pressure controlled ventilation. Biomed. Signal Process. Control 30, 70–78 (2016)CrossRef Kannangara, D.O., et al.: Estimating the true respiratory mechanics during asynchronous pressure controlled ventilation. Biomed. Signal Process. Control 30, 70–78 (2016)CrossRef
15.
go back to reference Vicario, F., et al.: Noninvasive estimation of respiratory mechanics in spontaneously breathing ventilated patients: a constrained optimization approach. IEEE Trans. Biomed. Eng. PP(99), 1–1 (2015) Vicario, F., et al.: Noninvasive estimation of respiratory mechanics in spontaneously breathing ventilated patients: a constrained optimization approach. IEEE Trans. Biomed. Eng. PP(99), 1–1 (2015)
16.
go back to reference Major, V., et al.: Assessing respiratory mechanics of reverse-triggered breathing cycles—case study of two mechanically ventilated patients. IFAC-PapersOnLine 48(20), 505–510 (2015)CrossRef Major, V., et al.: Assessing respiratory mechanics of reverse-triggered breathing cycles—case study of two mechanically ventilated patients. IFAC-PapersOnLine 48(20), 505–510 (2015)CrossRef
17.
go back to reference Damanhuri, N.S., et al.: Assessing respiratory mechanics using pressure reconstruction method in mechanically ventilated spontaneous breathing patient. Comput. Methods Programs Biomed. 130, 175–185 (2016)CrossRef Damanhuri, N.S., et al.: Assessing respiratory mechanics using pressure reconstruction method in mechanically ventilated spontaneous breathing patient. Comput. Methods Programs Biomed. 130, 175–185 (2016)CrossRef
18.
go back to reference Newberry, F., et al.: Iterative interpolative pressure reconstruction for improved respiratory mechanics estimation during asynchronous volume controlled ventilation. In: Ibrahim, F., et al. (eds.) International Conference for Innovation in Biomedical Engineering and Life Sciences: ICIBEL2015, 6–8 Dec 2015, Putrajaya, Malaysia, pp. 133–139. Springer Singapore, Singapore (2016) Newberry, F., et al.: Iterative interpolative pressure reconstruction for improved respiratory mechanics estimation during asynchronous volume controlled ventilation. In: Ibrahim, F., et al. (eds.) International Conference for Innovation in Biomedical Engineering and Life Sciences: ICIBEL2015, 6–8 Dec 2015, Putrajaya, Malaysia, pp. 133–139. Springer Singapore, Singapore (2016)
19.
go back to reference Chiew, Y.S., et al.: Model-based PEEP optimisation in mechanical ventilation. Biomed. Eng. OnLine 10(1), 111 (2011)CrossRef Chiew, Y.S., et al.: Model-based PEEP optimisation in mechanical ventilation. Biomed. Eng. OnLine 10(1), 111 (2011)CrossRef
20.
go back to reference van Drunen, E., et al.: Visualisation of time-varying respiratory system elastance in experimental ARDS animal models. BMC Pulm. Med. 14(1), 33 (2014)CrossRef van Drunen, E., et al.: Visualisation of time-varying respiratory system elastance in experimental ARDS animal models. BMC Pulm. Med. 14(1), 33 (2014)CrossRef
21.
go back to reference Moorhead, K., et al.: NAVA enhances tidal volume and diaphragmatic electro-myographic activity matching: a Range90 analysis of supply and demand. J. Clin. Monit. Comput. 27(1), 61–70 (2013)CrossRef Moorhead, K., et al.: NAVA enhances tidal volume and diaphragmatic electro-myographic activity matching: a Range90 analysis of supply and demand. J. Clin. Monit. Comput. 27(1), 61–70 (2013)CrossRef
22.
go back to reference Chiew, Y.S., et al.: Time-varying respiratory system elastance: a physiological model for patients who are spontaneously breathing. PLoS ONE 10(1), e0114847 (2015)CrossRef Chiew, Y.S., et al.: Time-varying respiratory system elastance: a physiological model for patients who are spontaneously breathing. PLoS ONE 10(1), e0114847 (2015)CrossRef
23.
go back to reference Redmond, D.P., Chiew, Y.S., Chase, J.G.: The effect of respiratory manoeuvres for patient-specific respiratory mechanics monitoring∗∗The study acknowledges funding support from the EU FP7 IRSES Marie Curie action and royal society of New Zealand. IFAC-PapersOnLine 48(20), 135–140 (2015)CrossRef Redmond, D.P., Chiew, Y.S., Chase, J.G.: The effect of respiratory manoeuvres for patient-specific respiratory mechanics monitoring∗∗The study acknowledges funding support from the EU FP7 IRSES Marie Curie action and royal society of New Zealand. IFAC-PapersOnLine 48(20), 135–140 (2015)CrossRef
24.
go back to reference Bibiano, C., et al.: Effects of different models and different respiratory manoeuvres in respiratory mechanics estimation. In: Kyriacou, E., Christofides, S., Pattichis, C.S. (eds.) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016: MEDICON 2016, March 31st–April 2nd 2016, Paphos, Cyprus, pp. 50–55. Springer International Publishing, Cham (2016) Bibiano, C., et al.: Effects of different models and different respiratory manoeuvres in respiratory mechanics estimation. In: Kyriacou, E., Christofides, S., Pattichis, C.S. (eds.) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016: MEDICON 2016, March 31st–April 2nd 2016, Paphos, Cyprus, pp. 50–55. Springer International Publishing, Cham (2016)
25.
go back to reference Kim, K., et al.: Breath-to-breath respiratory mechanics variation: how much variation should we expect? Crit. Care 19(Suppl 1), P260 (2015)CrossRef Kim, K., et al.: Breath-to-breath respiratory mechanics variation: how much variation should we expect? Crit. Care 19(Suppl 1), P260 (2015)CrossRef
Metadata
Title
Model Iterative Airway Pressure Reconstruction During Mechanical Ventilation Asynchrony: Shapes and Sizes of Reconstruction
Authors
Chee Pin Tan
Yeong Shiong Chiew
J. Geoffrey Chase
Yeong Woei Chiew
Christopher Pretty
Thomas Desaive
Azrina Md Ralib
Mohd Basri Mat
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7554-4_5