Skip to main content
Top

2025 | OriginalPaper | Chapter

Model Lake : A New Alternative for Machine Learning Models Management and Governance

Authors : Moncef Garouani, Franck Ravat, Nathalie Valles-Parlangeau

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rise of artificial intelligence and data science across industries underscores the pressing need for effective management and governance of machine learning (ML) models. Traditional approaches to ML models management often involve disparate storage systems and lack standardized methodologies for versioning, audit, and re-use. Inspired by data lake concepts, this paper develops the concept of ML Model Lake as a centralized management framework for datasets, codes, and models within organizations environments. We provide an in-depth exploration of the Model Lake concept, delineating its architectural foundations, key components, operational benefits, and practical challenges. We discuss the transformative potential of adopting a Model Lake approach, such as enhanced model lifecycle management, discovery, audit, and reusability. Furthermore, we illustrate a real-world application of Model Lake and its transformative impact on data, code and model management practices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
4
A common semi-structured form of model documentation.
 
Literature
1.
go back to reference Garouani, M., Ahmad, A., Bouneffa, M., Hamlich, M., Bourguin, G., Lewandowski, A.: Towards big industrial data mining through explainable automated machine learning. The International Journal of Advanced Manufacturing Technology, pp. 1169–1188 (2022). https://doi.org/10.1007/s00170-022-08761-9 Garouani, M., Ahmad, A., Bouneffa, M., Hamlich, M., Bourguin, G., Lewandowski, A.: Towards big industrial data mining through explainable automated machine learning. The International Journal of Advanced Manufacturing Technology, pp. 1169–1188 (2022). https://​doi.​org/​10.​1007/​s00170-022-08761-9
12.
go back to reference Schelter, S., et al.: On challenges in machine learning model management. IEEE Data Eng. Bull. 41, 5–15 (2018) Schelter, S., et al.: On challenges in machine learning model management. IEEE Data Eng. Bull. 41, 5–15 (2018)
16.
Metadata
Title
Model Lake : A New Alternative for Machine Learning Models Management and Governance
Authors
Moncef Garouani
Franck Ravat
Nathalie Valles-Parlangeau
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_10

Premium Partner