Skip to main content
Top
Published in:

28-06-2022

Model selection among Dimension-Reduced generalized Cox models

Authors: Ming-Yueh Huang, Kwun Chuen Gary Chan

Published in: Lifetime Data Analysis | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Conventional semiparametric hazards regression models rely on the specification of particular model formulations, such as proportional-hazards feature and single-index structures. Instead of checking these modeling assumptions one-by-one, we proposed a class of dimension-reduced generalized Cox models, and then a consistent model selection procedure among this class to select covariates with proportional-hazards feature and a proper model formulation for non-proportional-hazards covariates. In this class, the non-proportional-hazards covariates are treated in a nonparametric manner, and a partial sufficient dimension reduction is introduced to reduce the curse of dimensionality. A semiparametric efficient estimation is proposed to estimate these models. Based on the proposed estimation, we further constructed a cross-validation type criterion to consistently select the correct model among this class. Most importantly, this class of hazards regression models contains the fully nonparametric hazards regression model as the most saturated submodel, and hence no further model diagnosis is required. Overall speaking, this model selection approach is more effective than performing a sequence of conventional model checking. The proposed method is illustrated by simulation studies and a data example.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Bickel PJ, Klaassen CAJ, Ritov Y, Wellner JA (1998) Efficient and adaptive estimation for semiparametric models. Springer-Verlag, New YorkMATH Bickel PJ, Klaassen CAJ, Ritov Y, Wellner JA (1998) Efficient and adaptive estimation for semiparametric models. Springer-Verlag, New YorkMATH
go back to reference Chiaromonte F, Cook RD, Li B (2002) Sufficient dimension reduction in regressions with categorical predictors. Ann Statist 30(2):475–497MathSciNetCrossRef Chiaromonte F, Cook RD, Li B (2002) Sufficient dimension reduction in regressions with categorical predictors. Ann Statist 30(2):475–497MathSciNetCrossRef
go back to reference Dabrowska DM (1987) Nonparametric regression with censored survival time data. Scand J Statist 14(3):181–197MathSciNetMATH Dabrowska DM (1987) Nonparametric regression with censored survival time data. Scand J Statist 14(3):181–197MathSciNetMATH
go back to reference Fan J, Gijbels I, King M (1997) Local likelihood and local partial likelihood in hazard regression. Ann Statist 25(4):1661–1690MathSciNetCrossRef Fan J, Gijbels I, King M (1997) Local likelihood and local partial likelihood in hazard regression. Ann Statist 25(4):1661–1690MathSciNetCrossRef
go back to reference Feng Z, Wen XM, Yu Z, Zhu L (2013) On partial sufficient dimension reduction with applications to partially linear multi-index models. J Amer Statist Assoc 108(501):237–246MathSciNetCrossRef Feng Z, Wen XM, Yu Z, Zhu L (2013) On partial sufficient dimension reduction with applications to partially linear multi-index models. J Amer Statist Assoc 108(501):237–246MathSciNetCrossRef
go back to reference Gentleman R, Crowley J (1991) Local full likelihood estimation for the proportional hazards model. Biometrics 47(4):1283–1296MathSciNetCrossRef Gentleman R, Crowley J (1991) Local full likelihood estimation for the proportional hazards model. Biometrics 47(4):1283–1296MathSciNetCrossRef
go back to reference Gu C (1996) Penalized likelihood hazard estimation: a general procedure. Statist Sinica 6(4):861–876MathSciNetMATH Gu C (1996) Penalized likelihood hazard estimation: a general procedure. Statist Sinica 6(4):861–876MathSciNetMATH
go back to reference Huang JZ, Liu L (2006) Polynomial spline estimation and inference of proportional hazards regression models with flexible relative risk form. Biometrics 62(3):793–802MathSciNetCrossRef Huang JZ, Liu L (2006) Polynomial spline estimation and inference of proportional hazards regression models with flexible relative risk form. Biometrics 62(3):793–802MathSciNetCrossRef
go back to reference Huang JZ, Kooperberg C, Stone CJ, Truong YK (2000) Functional ANOVA modeling for proportional hazards regression. Ann Statist 28(4):961–999MathSciNetCrossRef Huang JZ, Kooperberg C, Stone CJ, Truong YK (2000) Functional ANOVA modeling for proportional hazards regression. Ann Statist 28(4):961–999MathSciNetCrossRef
go back to reference Huang MY, Chiang CT (2017) An effective semiparametric estimation approach for the sufficient dimension reduction model. J Amer Statist Assoc 112(519):1296–1310MathSciNetCrossRef Huang MY, Chiang CT (2017) An effective semiparametric estimation approach for the sufficient dimension reduction model. J Amer Statist Assoc 112(519):1296–1310MathSciNetCrossRef
go back to reference Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley Series in Probability and Statistics, Wiley-Interscience, Hoboken, NJ Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley Series in Probability and Statistics, Wiley-Interscience, Hoboken, NJ
go back to reference Lu X, Chen G, Singh RS, Song PXK (2006) A class of partially linear single-index survival models. Canad J Statist 34(1):97–112MathSciNetCrossRef Lu X, Chen G, Singh RS, Song PXK (2006) A class of partially linear single-index survival models. Canad J Statist 34(1):97–112MathSciNetCrossRef
go back to reference Nielsen JP, Linton OB (1995) Kernel estimation in a nonparametric marker dependent hazard model. Ann Statist 23(5):1735–1748MathSciNetCrossRef Nielsen JP, Linton OB (1995) Kernel estimation in a nonparametric marker dependent hazard model. Ann Statist 23(5):1735–1748MathSciNetCrossRef
go back to reference Rostgaard K, Væth M, Holst H, Madsen M, Lynge E (2001) Age-period-cohort modelling of breast cancer incidence in the nordic countries. Stat Med 20(1):47–61CrossRef Rostgaard K, Væth M, Holst H, Madsen M, Lynge E (2001) Age-period-cohort modelling of breast cancer incidence in the nordic countries. Stat Med 20(1):47–61CrossRef
go back to reference Sasieni P (1992) Information bounds for the conditional hazard ratio in a nested family of regression models. J Roy Statist Soc Ser B 54(2):617–635MathSciNetMATH Sasieni P (1992) Information bounds for the conditional hazard ratio in a nested family of regression models. J Roy Statist Soc Ser B 54(2):617–635MathSciNetMATH
go back to reference Shao Y, Cook RD, Weisberg S (2009) Partial central subspace and sliced average variance estimation. J Statist Plann Inference 139(3):952–961MathSciNetCrossRef Shao Y, Cook RD, Weisberg S (2009) Partial central subspace and sliced average variance estimation. J Statist Plann Inference 139(3):952–961MathSciNetCrossRef
go back to reference Sleeper LA, Harrington DP (1990) Regression splines in the cox model with application to covariate effects in liver disease. J Amer Statist Assoc 85(412):941–949CrossRef Sleeper LA, Harrington DP (1990) Regression splines in the cox model with application to covariate effects in liver disease. J Amer Statist Assoc 85(412):941–949CrossRef
go back to reference Stone M (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J Roy Statist Soc Ser B 39(1):44–47MathSciNetMATH Stone M (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J Roy Statist Soc Ser B 39(1):44–47MathSciNetMATH
go back to reference Sun J, Kopciuk KA, Lu X (2008) Polynomial spline estimation of partially linear single-index proportional hazards regression models. Comput Statist Data Anal 53(1):176–188MathSciNetCrossRef Sun J, Kopciuk KA, Lu X (2008) Polynomial spline estimation of partially linear single-index proportional hazards regression models. Comput Statist Data Anal 53(1):176–188MathSciNetCrossRef
go back to reference Tang X, Li J, Lian H (2013) Empirical likelihood for partially linear proportional hazards models with growing dimensions. J Multivariate Anal 121:22–32MathSciNetCrossRef Tang X, Li J, Lian H (2013) Empirical likelihood for partially linear proportional hazards models with growing dimensions. J Multivariate Anal 121:22–32MathSciNetCrossRef
go back to reference Tsiatis AA (2006) Semiparametric theory and missing data. Springer Series in Statistics. Springer, New YorkMATH Tsiatis AA (2006) Semiparametric theory and missing data. Springer Series in Statistics. Springer, New YorkMATH
go back to reference Wang W (2004) Proportional hazards regression models with unknown link function and time-dependent covariates. Statist Sinica 14(3):885–905MathSciNetMATH Wang W (2004) Proportional hazards regression models with unknown link function and time-dependent covariates. Statist Sinica 14(3):885–905MathSciNetMATH
Metadata
Title
Model selection among Dimension-Reduced generalized Cox models
Authors
Ming-Yueh Huang
Kwun Chuen Gary Chan
Publication date
28-06-2022
Publisher
Springer US
Published in
Lifetime Data Analysis / Issue 3/2022
Print ISSN: 1380-7870
Electronic ISSN: 1572-9249
DOI
https://doi.org/10.1007/s10985-022-09565-5

Premium Partner