Skip to main content
Top

23-10-2024 | Original Article

Modeling and Analysis of Trading Volume and Stock Return Data Using Bivariate q-Gaussian Distribution

Author: T. Princy

Published in: Annals of Data Science

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Two known characteristics of the distribution of stock returns (price fluctuations) and, more recently, the distribution of financial asset volumes are power laws and scaling. These power laws can be viewed as the asymptotic behaviour of distributions derived from nonextensive statistics, as demonstrated by an extensive number of instances in the field of physics. In this study, we explain the application of a non-extended statistics-based model for trading volume and stock price data. We present some novel theoretical results for the correlation between the trading volume distribution and stock return volatility that comes from entropy optimisation. We named this probability distribution as a bivariate q-Gaussian distribution since the resulting distribution is in terms of the q-exponential function, and when q tends to 1, it goes to the bivariate normal distribution. The primary characteristics of the novel model are thoroughly examined. The maximum likelihood estimation, a conventional technique, is used to conduct parameter estimation. The utility of the framing model is demonstrated using BSE Sensex data, which is used to illustrate the application of the bivariate q-Gaussian distribution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Karpoff JM (1987) The relation between price changes and trading volume: a survey. J Financ Quant Anal 22:109–126CrossRef Karpoff JM (1987) The relation between price changes and trading volume: a survey. J Financ Quant Anal 22:109–126CrossRef
2.
go back to reference Campbell JY, Lo AW, MacKinlay AC (1998) The econometrics of financial markets. Econ Theor 14:671–685CrossRef Campbell JY, Lo AW, MacKinlay AC (1998) The econometrics of financial markets. Econ Theor 14:671–685CrossRef
3.
go back to reference Jones C, Kaul G, Lipson M (1994) Transaction, volume and volatility. Rev Financ Stud 7:631–651CrossRef Jones C, Kaul G, Lipson M (1994) Transaction, volume and volatility. Rev Financ Stud 7:631–651CrossRef
4.
go back to reference Lo AW, Wang J (2000) Trading volume: definitions, data analysis and implications of portfolio theory. Rev Financ Stud 13:257–300CrossRef Lo AW, Wang J (2000) Trading volume: definitions, data analysis and implications of portfolio theory. Rev Financ Stud 13:257–300CrossRef
5.
go back to reference Osborne MF (1959) Brownian motion in the stock market. Oper Res 7:145–173CrossRef Osborne MF (1959) Brownian motion in the stock market. Oper Res 7:145–173CrossRef
6.
go back to reference Schwert GW (1989) Why does stock market volatility change over time? J Financ 44:1115–1153CrossRef Schwert GW (1989) Why does stock market volatility change over time? J Financ 44:1115–1153CrossRef
7.
go back to reference Bonanno G, Lillo F, Mantegna RN (2000) Dynamics of the number of trades of financial securities. Physica A 280:136–141CrossRef Bonanno G, Lillo F, Mantegna RN (2000) Dynamics of the number of trades of financial securities. Physica A 280:136–141CrossRef
8.
go back to reference Gabaix X, Gopikrishnan P, Plerou V, Stanley HE (2003) A theory of power-law distributions in financial market fluctuations. Nature 423:267–270CrossRef Gabaix X, Gopikrishnan P, Plerou V, Stanley HE (2003) A theory of power-law distributions in financial market fluctuations. Nature 423:267–270CrossRef
9.
go back to reference Plerou V, Gopikrishnan P, Stanley HE (2003) Two-phase behavior of financial markets. Nature 421:130CrossRef Plerou V, Gopikrishnan P, Stanley HE (2003) Two-phase behavior of financial markets. Nature 421:130CrossRef
10.
11.
go back to reference Harris Richard D, Küçüközmen CC (2001) The empirical distribution of UK and US stock returns. J Bus Finance Acc 28:715–740CrossRef Harris Richard D, Küçüközmen CC (2001) The empirical distribution of UK and US stock returns. J Bus Finance Acc 28:715–740CrossRef
12.
go back to reference Kevin S (2013) A study of the relation between market index, index futures, and index ETFs: a case study of India. Rev Integr Bus Econ Res 2:223–237 Kevin S (2013) A study of the relation between market index, index futures, and index ETFs: a case study of India. Rev Integr Bus Econ Res 2:223–237
13.
go back to reference Mandelbrot B (1963) New methods in statistical economics. J Polit Econ 71:421–440CrossRef Mandelbrot B (1963) New methods in statistical economics. J Polit Econ 71:421–440CrossRef
14.
15.
go back to reference Bachelier L (1900) Théorie de la spéculation. In: Annales scientifiques de l’École normale supérieure, vol 17, pp 21–86 Bachelier L (1900) Théorie de la spéculation. In: Annales scientifiques de l’École normale supérieure, vol 17, pp 21–86
16.
go back to reference Olson D, Shi Y (2007) Introduction to business data mining. McGraw-Hill, New York Olson D, Shi Y (2007) Introduction to business data mining. McGraw-Hill, New York
17.
go back to reference Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef
18.
go back to reference Tien J (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4:149–178CrossRef Tien J (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4:149–178CrossRef
19.
go back to reference Shi Y (2022) Advances in big data analytics: theory, algorithms and practices. Springer, SingaporeCrossRef Shi Y (2022) Advances in big data analytics: theory, algorithms and practices. Springer, SingaporeCrossRef
20.
go back to reference Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630CrossRef Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630CrossRef
21.
go back to reference Contreras-Reyes JE (2021) Lerch distribution based on maximum nonsymmetric entropy principle: application to Conway’s game of life cellular automaton. Chaos Solitons Fractals 151:111272CrossRef Contreras-Reyes JE (2021) Lerch distribution based on maximum nonsymmetric entropy principle: application to Conway’s game of life cellular automaton. Chaos Solitons Fractals 151:111272CrossRef
22.
go back to reference Princy T, Babu R (2023) Bivariate block and Basu’s exponential distribution through entropy optimization and its application to rainfall data. J Indian Soc Probab Stat 24:509–533CrossRef Princy T, Babu R (2023) Bivariate block and Basu’s exponential distribution through entropy optimization and its application to rainfall data. J Indian Soc Probab Stat 24:509–533CrossRef
23.
go back to reference Stosic D (2016) Applications of entropy on financial markets. Master’s thesis, Universidade Federal de Pernambuco Stosic D (2016) Applications of entropy on financial markets. Master’s thesis, Universidade Federal de Pernambuco
24.
go back to reference Zhou R, Cai R, Tong G (2013) Applications of entropy in finance: a review. Entropy 15:4909–4949CrossRef Zhou R, Cai R, Tong G (2013) Applications of entropy in finance: a review. Entropy 15:4909–4949CrossRef
25.
go back to reference Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423CrossRef Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423CrossRef
26.
go back to reference Havrda J, Charvát F (1967) Quantification method of classification procedures: concept of structural \(\alpha\)-entropy. Kybernetika 3:30–35 Havrda J, Charvát F (1967) Quantification method of classification procedures: concept of structural \(\alpha\)-entropy. Kybernetika 3:30–35
27.
go back to reference Daróczy Z (1970) Generalized information functions. Inf Control 16:36–51CrossRef Daróczy Z (1970) Generalized information functions. Inf Control 16:36–51CrossRef
28.
go back to reference Tsallis C (1988) Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys 52:479–487CrossRef Tsallis C (1988) Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys 52:479–487CrossRef
29.
go back to reference Mathai AM, Haubold HJ (2007) Pathway model, Tsallis statistics, superstatistics, and a generalized measure of entropy. Physica A 375:110122CrossRef Mathai AM, Haubold HJ (2007) Pathway model, Tsallis statistics, superstatistics, and a generalized measure of entropy. Physica A 375:110122CrossRef
30.
go back to reference Mathai AM, Princy T (2017) Multivariate and matrix-variate analogues of Maxwell–Boltzmann and Raleigh densities. Physica A 468:668–676CrossRef Mathai AM, Princy T (2017) Multivariate and matrix-variate analogues of Maxwell–Boltzmann and Raleigh densities. Physica A 468:668–676CrossRef
31.
go back to reference Princy T (2023) Some useful pathway models for reliability analysis. Reliab Theory Appl 18:340–359 Princy T (2023) Some useful pathway models for reliability analysis. Reliab Theory Appl 18:340–359
32.
go back to reference Princy T (2016) Modeling SAR images by using a pathway model. J Indian Soc Remote Sens 2:353–360 Princy T (2016) Modeling SAR images by using a pathway model. J Indian Soc Remote Sens 2:353–360
33.
go back to reference Princy T (2015) An extended compound gamma model and application to composite fading channels. Stat Optim Inf Comput 3:42–53 Princy T (2015) An extended compound gamma model and application to composite fading channels. Stat Optim Inf Comput 3:42–53
34.
go back to reference McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques, and tools. Princeton University Press McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques, and tools. Princeton University Press
35.
go back to reference Channouf N, L’Ecuyer P (2012) A normal copula model for the arrival process in a call center. Int Trans Oper Res 19:771–787CrossRef Channouf N, L’Ecuyer P (2012) A normal copula model for the arrival process in a call center. Int Trans Oper Res 19:771–787CrossRef
36.
go back to reference Fung T, Seneta E (2011) The bivariate normal copula function is regularly varying. Stat Probab Lett 81:1670–1676CrossRef Fung T, Seneta E (2011) The bivariate normal copula function is regularly varying. Stat Probab Lett 81:1670–1676CrossRef
37.
go back to reference Meyer C (2013) The bivariate normal copula. Commun Stat Theory Methods 42:2402–2422CrossRef Meyer C (2013) The bivariate normal copula. Commun Stat Theory Methods 42:2402–2422CrossRef
38.
go back to reference Klaassen CAJ, Wellner JA (1997) Efficient estimation in the bivariate normal copula model: normal margins are least favourable. Bernoulli 3:55–77CrossRef Klaassen CAJ, Wellner JA (1997) Efficient estimation in the bivariate normal copula model: normal margins are least favourable. Bernoulli 3:55–77CrossRef
39.
go back to reference Vignat C, Plastino A (2007) Central limit theorem and deformed exponentials. J Phys A Math Theor 40:969CrossRef Vignat C, Plastino A (2007) Central limit theorem and deformed exponentials. J Phys A Math Theor 40:969CrossRef
40.
go back to reference Vignat C, Plastino A (2007) Scale invariance and related properties of q-Gaussian systems. Phys Lett A 365:370–375CrossRef Vignat C, Plastino A (2007) Scale invariance and related properties of q-Gaussian systems. Phys Lett A 365:370–375CrossRef
41.
go back to reference Umarov S, Tsallis C, Steinberg S (2008) On a q-central limit theorem consistent with nonextensive statistical mechanics. Milan J Math 76:307–328CrossRef Umarov S, Tsallis C, Steinberg S (2008) On a q-central limit theorem consistent with nonextensive statistical mechanics. Milan J Math 76:307–328CrossRef
42.
go back to reference Ahmad MI, Sarr A (2016) Joint distribution of stock market returns and trading volume. Rev Integr Bus Res 5:110–116 Ahmad MI, Sarr A (2016) Joint distribution of stock market returns and trading volume. Rev Integr Bus Res 5:110–116
Metadata
Title
Modeling and Analysis of Trading Volume and Stock Return Data Using Bivariate q-Gaussian Distribution
Author
T. Princy
Publication date
23-10-2024
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00578-5

Premium Partner