Skip to main content
Top

2017 | OriginalPaper | Chapter

9. Modeling and Forecasting Marine Fog

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

All problems inherent to models’ imperfection and generally insufficient vertical and horizontal resolution, as well as inability to obtain full and accurate initial and boundary conditions, amplify for fog predictions. This is due to a huge span of relevant parameters and processes ranging from aerosols to hemispheric synoptic conditions. Understanding fog characteristics and evolution as well as constructing accurate initial and boundary conditions for forecasting is severely hindered by absence of dense routine and also special measurements over the vast oceans. Fog modeling and forecasting has a long history from early methods based on persistence and synoptic indicators and later through weather analysis to contemporary methods using high-resolution numerical models on regional scales, mesoscales, and microscales. The main issues that are critical to understanding and forecasting marine fog include synoptic conditions and advection, local circulations and flow properties, turbulence, characteristics of inversion and subsidence, longwave and shortwave radiative fluxes, air-sea interaction, aerosols, microphysics, and coastal topography. The two main approaches to fog predictions are statistical and dynamical forecasting methods. Some of the statistical methods are based on various statistical analyses including regressions, correlations, classifications, and tree decision diagrams. Additional statistical methods include artificial neural networks and fuzzy logic, which can successfully treat nonlinear relationships between fog predictors and predictands. The statistical methods are applicable and useful when there is a sufficient archive of fog predictor parameters and fog observations at a location of interest. An advantage of using statistical methods is their computational efficiency allowing for fog nowcasting as an independent tool or in conjunction with operational forecasting models. A disadvantage is that the statistical approach does not take into account the actual three-dimensional weather structure and evolution. Dynamical models for fog forecasting use mathematical representations of basic conservation laws and parameterizations of physical processes including the ones relevant to fog. Early research in numerical studies has used one- (1D) and two-dimensional (2D) models, which can allow for high vertical resolutions and detailed parameterization schemes. Since 1D and 2D models cannot represent the full structure and evolution of atmospheric processes, three-dimensional (3D) models have been used for operational weather forecasts. An important objective of 3D modeling studies is understanding the path history of an air mass transformation that leads to fog or fog-free conditions. Some of the main drawbacks of 3D models include the high computational requirements, which usually result in inadequate horizontal and vertical resolution, and simplifications in physics parameterization schemes. It is obviously best to use the advantages of each of these types of models and to combine them into an integrated modeling system that can improve the accuracy of the forecast. Further improvement in marine fog forecasting is obtained by treating air-sea interaction with coupled atmospheric and ocean models. Besides a deterministic approach with a single fog forecast outcome, probabilistic methods based on an ensemble of solutions are emerging. The probabilistic forecasts are able to reveal uncertainties due to the initial and boundary conditions, physics parameterizations, and model structure and setup. Advanced modeling approaches such as the large-eddy simulation (LES) technique has been also used for fog predictions. LES can simulate high-resolution atmospheric fields including turbulence on limited domains, however, they have limitations in representing realistic synoptic processes. With the rapid development of measurement networks, and especially with satellite data, it has been shown that assimilation of data into the models can significantly improve the forecast accuracy. Although initially fog forecasts were developed and applied to marine areas of North America and Europe, it is encouraging that various fog forecasting methods are being developed and applied to marine areas of other continents. Of definite interest is to estimate projections of fog characteristics using regional climate models that are recently under rapid developments. In spite of their uncertainties in initial and boundary conditions as well as in emissions of aerosols and greenhouse gases, limited resolutions, and generally simplified physics parameterizations, they are valuable tools in assessing meteorological parameters relevant to future fog occurrence and evolution.
Due to the complex structure and evolution of marine fog as well as the generally significant influence of microlocations on fog processes, many studies show that a subjective forecaster’s experience still represents a valuable component in the final creation of an accurate fog forecast.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ballard, S., Golding, B., & Smith, R. (1991). Mesoscale model experimental forecasts of the haar of northeast Scotland. Monthly Weather Review, 191, 2107–2123.CrossRef Ballard, S., Golding, B., & Smith, R. (1991). Mesoscale model experimental forecasts of the haar of northeast Scotland. Monthly Weather Review, 191, 2107–2123.CrossRef
go back to reference Bari, D., Bergot, T., & El Khlifi, M. (2015). Numerical study of a coastal fog event over Casablanca, Morocco. Quarterly Journal of the Royal Meteorological Society, 141, 1894–1905.CrossRef Bari, D., Bergot, T., & El Khlifi, M. (2015). Numerical study of a coastal fog event over Casablanca, Morocco. Quarterly Journal of the Royal Meteorological Society, 141, 1894–1905.CrossRef
go back to reference Barker, E. (1977). A maritime boundary-layer model for the prediction of fog. Boundary-Layer Meteorology, 11, 267–294.CrossRef Barker, E. (1977). A maritime boundary-layer model for the prediction of fog. Boundary-Layer Meteorology, 11, 267–294.CrossRef
go back to reference Bartok, B., Bott, A., & Gera, M. (2012). Fog prediction for road traffic safety in a coastal desert region. Boundary-Layer Meteorology, 145(3), 485–506.CrossRef Bartok, B., Bott, A., & Gera, M. (2012). Fog prediction for road traffic safety in a coastal desert region. Boundary-Layer Meteorology, 145(3), 485–506.CrossRef
go back to reference Benoit, R., Desgagne, J. M., Pellerin, P., Pellerin, S., Chartier, Y., & Desjardins, S. (1997). The Canadian Mc2: A semi-Lagrangian, semi-implicit wide band atmospheric model suited for fine scale process studies and simulation. Monthly Weather Review, 125, 2382–2415.CrossRef Benoit, R., Desgagne, J. M., Pellerin, P., Pellerin, S., Chartier, Y., & Desjardins, S. (1997). The Canadian Mc2: A semi-Lagrangian, semi-implicit wide band atmospheric model suited for fine scale process studies and simulation. Monthly Weather Review, 125, 2382–2415.CrossRef
go back to reference Benz, R. F. (2003). Data mining atmospheric/oceanic parameters in the design of a long-range nephelometric forecast tool. Master’s Thesis, Department of Engineering Physics, Air Force Institute of Technology, pp. 42–47. Benz, R. F. (2003). Data mining atmospheric/oceanic parameters in the design of a long-range nephelometric forecast tool. Master’s Thesis, Department of Engineering Physics, Air Force Institute of Technology, pp. 42–47.
go back to reference Bonancina, L. C. W. (1925). Notes on the fog of January 10th–12th, 1925. Meteorological Magazine, 60, 7–8. Bonancina, L. C. W. (1925). Notes on the fog of January 10th–12th, 1925. Meteorological Magazine, 60, 7–8.
go back to reference Bott, A., & Trautmann, T. (2002). PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds. Atmospheric Research, 64(1–4), 191–203.CrossRef Bott, A., & Trautmann, T. (2002). PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds. Atmospheric Research, 64(1–4), 191–203.CrossRef
go back to reference Cho, Y.-K., Kim, M.-O., & Kim, B.-C. (2000). Sea fog around the Korean Peninsula. Journal of Applied Meteorology, 39, 2473–2479.CrossRef Cho, Y.-K., Kim, M.-O., & Kim, B.-C. (2000). Sea fog around the Korean Peninsula. Journal of Applied Meteorology, 39, 2473–2479.CrossRef
go back to reference Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.CrossRef Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.CrossRef
go back to reference Dorman, C. E. (2017). Early and recent observational techniques for fog (Chap. 3). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer. Dorman, C. E. (2017). Early and recent observational techniques for fog (Chap. 3). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.
go back to reference Dorman, C. E., Mejia, J., Koračin, D., & McEvoy, D. (2017). Worlwide marine fog occurrence and climatology (Chap. 2). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer. Dorman, C. E., Mejia, J., Koračin, D., & McEvoy, D. (2017). Worlwide marine fog occurrence and climatology (Chap. 2). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.
go back to reference Douglas, C. (1930). Cold fogs over the sea. Meteorological Magazine, 65, 133–135. Douglas, C. (1930). Cold fogs over the sea. Meteorological Magazine, 65, 133–135.
go back to reference Du, J., & Zhou, B. (2017). Ensemble fog prediction (Chap. 10). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer. Du, J., & Zhou, B. (2017). Ensemble fog prediction (Chap. 10). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.
go back to reference Edson, J., Crawford, T., Crescenti, J., Farrar, T., Frew, N., Gerbi, G., et al. (2007). The coupled boundary layers and air–sea transfer experiment in low winds. Bulletin of the American Meteorological Society, 88, 341–356. doi:10.1175/BAMS-88-3-341.CrossRef Edson, J., Crawford, T., Crescenti, J., Farrar, T., Frew, N., Gerbi, G., et al. (2007). The coupled boundary layers and air–sea transfer experiment in low winds. Bulletin of the American Meteorological Society, 88, 341–356. doi:10.​1175/​BAMS-88-3-341.CrossRef
go back to reference Ellrod, G. P. (1995). Advances in the detection and analysis of fog at night using GOES multi-spectral infrared imagery. Weather and Forecasting, 10, 606–619.CrossRef Ellrod, G. P. (1995). Advances in the detection and analysis of fog at night using GOES multi-spectral infrared imagery. Weather and Forecasting, 10, 606–619.CrossRef
go back to reference Emmons, G., & Montgomery, R. B. (1947). Note on the physics of fog formation. Journal of Meteorology, 4, 206.CrossRef Emmons, G., & Montgomery, R. B. (1947). Note on the physics of fog formation. Journal of Meteorology, 4, 206.CrossRef
go back to reference Findlater, J., Roach, W., & McHugh, B. (1989). The haar of north-east Scotland. Quarterly Journal of the Royal Meteorological Society, 115, 581–608.CrossRef Findlater, J., Roach, W., & McHugh, B. (1989). The haar of north-east Scotland. Quarterly Journal of the Royal Meteorological Society, 115, 581–608.CrossRef
go back to reference Fisher, E. L., & Caplan, P. (1963). An experiment in numerical prediction of fog and stratus. Journal of the Atmospheric Sciences, 20, 425–437.CrossRef Fisher, E. L., & Caplan, P. (1963). An experiment in numerical prediction of fog and stratus. Journal of the Atmospheric Sciences, 20, 425–437.CrossRef
go back to reference Fitzgerald, J. W. (1978). A numerical model of the formation of droplet spectra in advection fogs at sea and its applicability to fogs off Nova Scotia. Journal of the Atmospheric Sciences, 35, 1522–1535.CrossRef Fitzgerald, J. W. (1978). A numerical model of the formation of droplet spectra in advection fogs at sea and its applicability to fogs off Nova Scotia. Journal of the Atmospheric Sciences, 35, 1522–1535.CrossRef
go back to reference Gao, S., Lin, H., Shen, B., & Fu, G. (2007). A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling. Advances in Atmospheric Sciences, 24, 65–81.CrossRef Gao, S., Lin, H., Shen, B., & Fu, G. (2007). A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling. Advances in Atmospheric Sciences, 24, 65–81.CrossRef
go back to reference Garland, J. A. (1971). Some fog droplet size distributions obtained by an impaction method. Quarterly Journal of the Royal Meteorological Society, 97, 483–494.CrossRef Garland, J. A. (1971). Some fog droplet size distributions obtained by an impaction method. Quarterly Journal of the Royal Meteorological Society, 97, 483–494.CrossRef
go back to reference Garreaud, R., Barichivich, J., Christie, D. A., & Maldonado, A. (2008). Interannual variability of the coastal fog at Fray Jorge relict forests in semiarid Chile. Journal of Geophysical Research: Biogeosciences, 113(G4), 2005–2012. Garreaud, R., Barichivich, J., Christie, D. A., & Maldonado, A. (2008). Interannual variability of the coastal fog at Fray Jorge relict forests in semiarid Chile. Journal of Geophysical Research: Biogeosciences, 113(G4), 2005–2012.
go back to reference Glahn, H. R., & Dallavalle, J. P. (2002). The new NWS MOS development and implementation systems. Preprints. In 16th Conference on Probability and Statistics in the Atmospheric Sciences (pp. 78–81). Orlando, FL: American Meteorological Society. Glahn, H. R., & Dallavalle, J. P. (2002). The new NWS MOS development and implementation systems. Preprints. In 16th Conference on Probability and Statistics in the Atmospheric Sciences (pp. 78–81). Orlando, FL: American Meteorological Society.
go back to reference Glahn, H. R., & Lowry, D. A. (1972). The use of model output statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology, 11, 1202–1211. Glahn, H. R., & Lowry, D. A. (1972). The use of model output statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology, 11, 1202–1211.
go back to reference Golding, B. W. (1987). The U.K. Meteorological Office mesoscale model. Boundary-Layer Meteorology, 41, 97–107.CrossRef Golding, B. W. (1987). The U.K. Meteorological Office mesoscale model. Boundary-Layer Meteorology, 41, 97–107.CrossRef
go back to reference Grell, G. A., Dudhia, J., & Stauffer, D. R. (1994). A description of the fifth-generation Penn state/NCAR Mesoscale Model (MM5) (NCAR Tech. Note NCAR/TN-398+STR, 122pp). Grell, G. A., Dudhia, J., & Stauffer, D. R. (1994). A description of the fifth-generation Penn state/NCAR Mesoscale Model (MM5) (NCAR Tech. Note NCAR/TN-398+STR, 122pp).
go back to reference Gultepe, I., & Milbrandt, J. A. (2007). Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. Pure and Applied Geophysics, 164, 1161–1178.CrossRef Gultepe, I., & Milbrandt, J. A. (2007). Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. Pure and Applied Geophysics, 164, 1161–1178.CrossRef
go back to reference Gultepe, I., Müller, M. D., & Boybeyi, Z. (2006). A new warm fog parameterization scheme for numerical weather prediction models. Journal of Applied Meteorology, 45, 1469–1480.CrossRef Gultepe, I., Müller, M. D., & Boybeyi, Z. (2006). A new warm fog parameterization scheme for numerical weather prediction models. Journal of Applied Meteorology, 45, 1469–1480.CrossRef
go back to reference Gultepe, I., Milbrandt, J. A., & Zhou, B. (2017). Marine fog: A review on microphysics and visibility prediction (Chap. 7). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer. Gultepe, I., Milbrandt, J. A., & Zhou, B. (2017). Marine fog: A review on microphysics and visibility prediction (Chap. 7). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.
go back to reference Gultepe, I., Pearson, G., Milbrandt, J. A., Hansen, B., Platnick, S., Taylor, P., et al. (2009). The fog remote sensing and modeling (FRAM) field project. Bulletin of the American Meteorological Society, 90, 341–359.CrossRef Gultepe, I., Pearson, G., Milbrandt, J. A., Hansen, B., Platnick, S., Taylor, P., et al. (2009). The fog remote sensing and modeling (FRAM) field project. Bulletin of the American Meteorological Society, 90, 341–359.CrossRef
go back to reference Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., et al. (2007). Fog research: A review of past achievements and future perspectives. Pure and Applied Geophysics, 164, 1121–1159.CrossRef Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., et al. (2007). Fog research: A review of past achievements and future perspectives. Pure and Applied Geophysics, 164, 1121–1159.CrossRef
go back to reference Gutiérrez, A. G., Barbosa, O., Christie, D. A., del-Val, E., Ewing, H. A., Jones, C. G., et al. (2008). Regeneration patterns and persistence of the fog dependent Fray Jorge forest in semiarid Chile during the past two centuries. Global Change Biology, 14, 161–176. doi:10.1111/j.13652486.2007.01482.x. Gutiérrez, A. G., Barbosa, O., Christie, D. A., del-Val, E., Ewing, H. A., Jones, C. G., et al. (2008). Regeneration patterns and persistence of the fog dependent Fray Jorge forest in semiarid Chile during the past two centuries. Global Change Biology, 14, 161–176. doi:10.​1111/​j.​13652486.​2007.​01482.​x.
go back to reference Heo, K.-Y., & Ha, K.-J. (2010). A coupled model study on the formation and dissipation of sea fogs. Monthly Weather Review, 138, 1186–1205.CrossRef Heo, K.-Y., & Ha, K.-J. (2010). A coupled model study on the formation and dissipation of sea fogs. Monthly Weather Review, 138, 1186–1205.CrossRef
go back to reference Hodur, R. M. (1997). The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Monthly Weather Review, 125, 1414–1430.CrossRef Hodur, R. M. (1997). The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Monthly Weather Review, 125, 1414–1430.CrossRef
go back to reference Hodur, R. M., Hong, X., Doyle, J. D., Pullen, J., Cummings, J., Martin, P., et al. (2002). The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Oceanography, 15, 88–98.CrossRef Hodur, R. M., Hong, X., Doyle, J. D., Pullen, J., Cummings, J., Martin, P., et al. (2002). The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Oceanography, 15, 88–98.CrossRef
go back to reference Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed., p. 375). Hoboken, NJ: Wiley.CrossRef Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed., p. 375). Hoboken, NJ: Wiley.CrossRef
go back to reference Huang, H., Huang, J., Liu, C., Yuan, J., Mao, W., & Liao, F. (2011). Prediction of sea fog of Guangdong coastland using the variable factors output by GRAPES model. Journal of Tropical Meteorology, 17, 166–174. Huang, H., Huang, J., Liu, C., Yuan, J., Mao, W., & Liao, F. (2011). Prediction of sea fog of Guangdong coastland using the variable factors output by GRAPES model. Journal of Tropical Meteorology, 17, 166–174.
go back to reference Huang, H., Liu, H., Huang, J., Mao, W., & Bi, X. (2015). Atmospheric boundary layer structure and turbulence during sea fog on the southern China Coast. Monthly Weather Review, 143, 1907–1923. doi:10.1175/MWR-D-14-00207.1.CrossRef Huang, H., Liu, H., Huang, J., Mao, W., & Bi, X. (2015). Atmospheric boundary layer structure and turbulence during sea fog on the southern China Coast. Monthly Weather Review, 143, 1907–1923. doi:10.​1175/​MWR-D-14-00207.​1.CrossRef
go back to reference Huang, H., Liu, H., Jiang, W., Huang, J., & Mao, W. (2011). Characteristics of the boundary layer structure of sea fog on the coast of Southern China. Advances in Atmospheric Sciences, 28(6), 1377–1389.CrossRef Huang, H., Liu, H., Jiang, W., Huang, J., & Mao, W. (2011). Characteristics of the boundary layer structure of sea fog on the coast of Southern China. Advances in Atmospheric Sciences, 28(6), 1377–1389.CrossRef
go back to reference Hudson, J. G. (1980). Relationship between fog condensation nuclei and fog microstructure. Journal of the Atmospheric Sciences, 37, 1854–1867.CrossRef Hudson, J. G. (1980). Relationship between fog condensation nuclei and fog microstructure. Journal of the Atmospheric Sciences, 37, 1854–1867.CrossRef
go back to reference Ishida, H., Miura, M., Matsuda, T., Ogawara, K., Goto, A., Matsuura, K., et al. (2014). Investigation of low-cloud characteristics using mesoscale numerical model data for improvement of fog-detection performance by satellite remote sensing. Journal of Applied Meteorology and Climatology, 53, 2246–2263.CrossRef Ishida, H., Miura, M., Matsuda, T., Ogawara, K., Goto, A., Matsuura, K., et al. (2014). Investigation of low-cloud characteristics using mesoscale numerical model data for improvement of fog-detection performance by satellite remote sensing. Journal of Applied Meteorology and Climatology, 53, 2246–2263.CrossRef
go back to reference Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77, 437–471.CrossRef Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77, 437–471.CrossRef
go back to reference Kim, C.-K., & Yum, S.-S. (2010). Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea. Advances in Atmospheric Sciences, 27, 761–776.CrossRef Kim, C.-K., & Yum, S.-S. (2010). Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea. Advances in Atmospheric Sciences, 27, 761–776.CrossRef
go back to reference Kim, C.-K., & Yum, S.-S. (2012). A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the weather research and forecasting model. Boundary-Layer Meteorology, 143, 481–505.CrossRef Kim, C.-K., & Yum, S.-S. (2012). A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the weather research and forecasting model. Boundary-Layer Meteorology, 143, 481–505.CrossRef
go back to reference Kim, C. K., & Yum, S. S. (2017a). Turbulence in marine fog (Chap. 4). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer. Kim, C. K., & Yum, S. S. (2017a). Turbulence in marine fog (Chap. 4). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.
go back to reference Kim, C. K., & Yum, S. S. (2017b). Radiation in marine fog (Chap. 5). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer. Kim, C. K., & Yum, S. S. (2017b). Radiation in marine fog (Chap. 5). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.
go back to reference Koračin, D., Businger, J. A., Dorman, C. E., & Lewis, J. M. (2005). Formation, evolution, and dissipation of coastal sea fog. Boundary-Layer Meteorology, 117, 447–478.CrossRef Koračin, D., Businger, J. A., Dorman, C. E., & Lewis, J. M. (2005). Formation, evolution, and dissipation of coastal sea fog. Boundary-Layer Meteorology, 117, 447–478.CrossRef
go back to reference Koračin, D., Dorman, C. E., Lewis, J. M., Hudson, J. G., Wilcox, E. M., & Torregrosa, A. (2014). Marine fog: A review. Atmospheric Research, 143, 142–175.CrossRef Koračin, D., Dorman, C. E., Lewis, J. M., Hudson, J. G., Wilcox, E. M., & Torregrosa, A. (2014). Marine fog: A review. Atmospheric Research, 143, 142–175.CrossRef
go back to reference Koračin, D., Dorman, C. E., & Dever, E. P. (2004). Coastal perturbations of marine layer winds, wind stress, and wind stress curl along California and Baja California in June 1999. Journal of Physical Oceanography, 34, 1152–1173.CrossRef Koračin, D., Dorman, C. E., & Dever, E. P. (2004). Coastal perturbations of marine layer winds, wind stress, and wind stress curl along California and Baja California in June 1999. Journal of Physical Oceanography, 34, 1152–1173.CrossRef
go back to reference Koračin, D., Leipper, D. F., & Lewis, J. M. (2005). Modeling sea fog on the U.S. California coast during a hot spell event. Geofizika, 22, 59–82. Koračin, D., Leipper, D. F., & Lewis, J. M. (2005). Modeling sea fog on the U.S. California coast during a hot spell event. Geofizika, 22, 59–82.
go back to reference Koračin, D., Lewis, J., Thompson, W. T., Dorman, C. E., & Businger, J. A. (2001). Transition of stratus into fog along the California coast: Observations and modeling. Journal of the Atmospheric Sciences, 58, 1714–1731.CrossRef Koračin, D., Lewis, J., Thompson, W. T., Dorman, C. E., & Businger, J. A. (2001). Transition of stratus into fog along the California coast: Observations and modeling. Journal of the Atmospheric Sciences, 58, 1714–1731.CrossRef
go back to reference Kunkel, B. A. (1984). Parameterization of droplet terminal velocity and extinction coefficient in fog models. Journal of Climate and Applied Meteorology, 23, 34–41.CrossRef Kunkel, B. A. (1984). Parameterization of droplet terminal velocity and extinction coefficient in fog models. Journal of Climate and Applied Meteorology, 23, 34–41.CrossRef
go back to reference Leipper, D. (1948). Fog development at San Diego, California. Journal of Marine Research, 7, 337–346. Leipper, D. (1948). Fog development at San Diego, California. Journal of Marine Research, 7, 337–346.
go back to reference Leipper, D. F. (1994). Fog on the U.S. West Coast, a review. Bulletin of the American Meteorological Society, 72, 229–240.CrossRef Leipper, D. F. (1994). Fog on the U.S. West Coast, a review. Bulletin of the American Meteorological Society, 72, 229–240.CrossRef
go back to reference Lewis, J. M., Koračin, D., & Redmond, K. T. (2004). Sea fog research in the United Kingdom and United States: A historical essay including outlook. Bulletin of the American Meteorological Society, 85, 395–408.CrossRef Lewis, J. M., Koračin, D., & Redmond, K. T. (2004). Sea fog research in the United Kingdom and United States: A historical essay including outlook. Bulletin of the American Meteorological Society, 85, 395–408.CrossRef
go back to reference Li, P., Fu, G., Lu, C., Fu, D., & Wang, S. (2012). The formation mechanism of a spring sea fog event over the Yellow Sea associated with a low-level jet. Weather and Forecasting, 27, 1538–1553.CrossRef Li, P., Fu, G., Lu, C., Fu, D., & Wang, S. (2012). The formation mechanism of a spring sea fog event over the Yellow Sea associated with a low-level jet. Weather and Forecasting, 27, 1538–1553.CrossRef
go back to reference Marzban, C., Leyton, S., & Colman, B. (2007). Ceiling and visibility forecasts via neural nets. Weather and Forecasting, 22(3), 466–479.CrossRef Marzban, C., Leyton, S., & Colman, B. (2007). Ceiling and visibility forecasts via neural nets. Weather and Forecasting, 22(3), 466–479.CrossRef
go back to reference Mensbrugghe, V. (1892). The formation of fog and of clouds, translated from Ciel et Terre. Symons’s Monthly Meteorological Magazine, 27, 40–41. Mensbrugghe, V. (1892). The formation of fog and of clouds, translated from Ciel et Terre. Symons’s Monthly Meteorological Magazine, 27, 40–41.
go back to reference Miao, Y., Potts, R., Huang, X., Elliot, G., & Rivett, R. (2012). A fuzzy logic fog forecasting model for Perth airport. Pure and Applied Geophysics, 169, 1107–1119.CrossRef Miao, Y., Potts, R., Huang, X., Elliot, G., & Rivett, R. (2012). A fuzzy logic fog forecasting model for Perth airport. Pure and Applied Geophysics, 169, 1107–1119.CrossRef
go back to reference Milbrandt, J. A., & Yau, M. K. (2005a). A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. Journal of the Atmospheric Sciences, 62, 3051–3064.CrossRef Milbrandt, J. A., & Yau, M. K. (2005a). A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. Journal of the Atmospheric Sciences, 62, 3051–3064.CrossRef
go back to reference Milbrandt, J. A., & Yau, M. K. (2005b). A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. Journal of the Atmospheric Sciences, 62, 3065–3081.CrossRef Milbrandt, J. A., & Yau, M. K. (2005b). A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. Journal of the Atmospheric Sciences, 62, 3065–3081.CrossRef
go back to reference Nakanishi, M. (2000). Large-eddy simulation of radiation fog. Boundary-Layer Meteorology, 94, 461–493.CrossRef Nakanishi, M. (2000). Large-eddy simulation of radiation fog. Boundary-Layer Meteorology, 94, 461–493.CrossRef
go back to reference Neumann, J. (1989). Forecasts of fine weather in the literature of classical antiquity. Bulletin of the American Meteorological Society, 70, 46–48. Neumann, J. (1989). Forecasts of fine weather in the literature of classical antiquity. Bulletin of the American Meteorological Society, 70, 46–48.
go back to reference O’Brien, T. A., Chuang, P. Y., Sloan, L. C., Faloona, I. C., & Rossiter, D. L. (2012). Coupling a new turbulence parametrization to RegCM adds realistic stratocumulus clouds. Geoscience Model Development, 5(4), 989–1008.CrossRef O’Brien, T. A., Chuang, P. Y., Sloan, L. C., Faloona, I. C., & Rossiter, D. L. (2012). Coupling a new turbulence parametrization to RegCM adds realistic stratocumulus clouds. Geoscience Model Development, 5(4), 989–1008.CrossRef
go back to reference O’Brien, T. A., Sloan, L. C., Chuang, P. Y., Faloona, I. C., & Johnstone, J. A. (2013). Multidecadal simulation of coastal fog with a regional climate model. Climate Dynamics, 40, 2801–2812.CrossRef O’Brien, T. A., Sloan, L. C., Chuang, P. Y., Faloona, I. C., & Johnstone, J. A. (2013). Multidecadal simulation of coastal fog with a regional climate model. Climate Dynamics, 40, 2801–2812.CrossRef
go back to reference Oliver, D., Lewellen, W., & Williamson, G. (1978). The interaction between turbulent and radiative transport in the development of fog and low-level stratus. Journal of the Atmospheric Sciences, 35, 301–316.CrossRef Oliver, D., Lewellen, W., & Williamson, G. (1978). The interaction between turbulent and radiative transport in the development of fog and low-level stratus. Journal of the Atmospheric Sciences, 35, 301–316.CrossRef
go back to reference Petterssen, S. V. (1936). On the causes and forecasting of the California fog. Journal of the Aeronautical Sciences, 3, 305–309.CrossRef Petterssen, S. V. (1936). On the causes and forecasting of the California fog. Journal of the Aeronautical Sciences, 3, 305–309.CrossRef
go back to reference Petterssen, S. V. (1938). On the causes and forecasting of the California fog. Bulletin of the American Meteorological Society, 19, 49–55. Petterssen, S. V. (1938). On the causes and forecasting of the California fog. Bulletin of the American Meteorological Society, 19, 49–55.
go back to reference Petterssen, S. (1939). Some aspects of formation and dissipation of fog. Geofysiske Publikasjoner, 12, 15–22. Petterssen, S. (1939). Some aspects of formation and dissipation of fog. Geofysiske Publikasjoner, 12, 15–22.
go back to reference Pilié, R. J., Mack, E. J., Rogers, C. W., Katz, U., & Kocmond, W. C. (1979). The formation of marine fog and the development of fog-stratus systems along the California coast. Journal of Applied Meteorology, 18, 1275–1286.CrossRef Pilié, R. J., Mack, E. J., Rogers, C. W., Katz, U., & Kocmond, W. C. (1979). The formation of marine fog and the development of fog-stratus systems along the California coast. Journal of Applied Meteorology, 18, 1275–1286.CrossRef
go back to reference Roach, W., Brown, R., Caughey, S. J., Garland, J. A., & Readings, C. J. (1976). The physics of radiation fog: I—A field study. Quarterly Journal of the Royal Meteorological Society, 102, 313–333. Roach, W., Brown, R., Caughey, S. J., Garland, J. A., & Readings, C. J. (1976). The physics of radiation fog: I—A field study. Quarterly Journal of the Royal Meteorological Society, 102, 313–333.
go back to reference Scott, R. H. (1894). Fogs reported with strong winds during the 15 years 1876–90 in the British Isles. Quarterly Journal of the Royal Meteorological Society, 20(92), 253–262.CrossRef Scott, R. H. (1894). Fogs reported with strong winds during the 15 years 1876–90 in the British Isles. Quarterly Journal of the Royal Meteorological Society, 20(92), 253–262.CrossRef
go back to reference Shchepetkin, A. F., & McWilliams, J. C. (2004). The regional oceanic modeling system: A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modelling, 9, 347–404.CrossRef Shchepetkin, A. F., & McWilliams, J. C. (2004). The regional oceanic modeling system: A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modelling, 9, 347–404.CrossRef
go back to reference Skamarock, W., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., et al. (2008). A Description of the Advanced Research WRF Version 3 (NCAR Technical Note NCAR/TN-475+STR). doi:10.5065/D68S4MVH. Skamarock, W., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., et al. (2008). A Description of the Advanced Research WRF Version 3 (NCAR Technical Note NCAR/TN-475+STR). doi:10.​5065/​D68S4MVH.
go back to reference Stage, S. A., & Businger, J. A. (1981). A model for entrainment into a cloud-topped marine boundary-layer. Part II: Discussion of model behaviour and comparison with other models. Journal of the Atmospheric Sciences, 38, 2230–2242. Stage, S. A., & Businger, J. A. (1981). A model for entrainment into a cloud-topped marine boundary-layer. Part II: Discussion of model behaviour and comparison with other models. Journal of the Atmospheric Sciences, 38, 2230–2242.
go back to reference Tang, Y. (2012). The effect of variable sea surface temperature on forecasting sea fog and sea breezes: A case study. Journal of Applied Meteorology and Climatology, 51, 986–990.CrossRef Tang, Y. (2012). The effect of variable sea surface temperature on forecasting sea fog and sea breezes: A case study. Journal of Applied Meteorology and Climatology, 51, 986–990.CrossRef
go back to reference Tardif, R., & Rasmussen, R. M. (2007). Event-based climatology and typology of fog in the New York City region. Journal of Applied Meteorology and Climatology, 46(8), 1141–1168.CrossRef Tardif, R., & Rasmussen, R. M. (2007). Event-based climatology and typology of fog in the New York City region. Journal of Applied Meteorology and Climatology, 46(8), 1141–1168.CrossRef
go back to reference Tardif, R., & Rasmussen, R. M. (2008). Process-oriented analysis of environmental conditions associated with precipitation fog events in the New York City region. Journal of Applied Meteorology and Climatology, 47, 1681–1703.CrossRef Tardif, R., & Rasmussen, R. M. (2008). Process-oriented analysis of environmental conditions associated with precipitation fog events in the New York City region. Journal of Applied Meteorology and Climatology, 47, 1681–1703.CrossRef
go back to reference Tardif, R. (2017). Precipitation and fog (Chap. 8). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer. Tardif, R. (2017). Precipitation and fog (Chap. 8). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.
go back to reference Taylor, G. I. (1917). The formation of fog and mist. Quarterly Journal of the Royal Meteorological Society, 43, 241–268.CrossRef Taylor, G. I. (1917). The formation of fog and mist. Quarterly Journal of the Royal Meteorological Society, 43, 241–268.CrossRef
go back to reference Teixeira, J., & Miranda, P. M. A. (2001). Fog prediction at Lisbon airport using a one-dimensional boundary layer model. Meteorological Applications, 8, 497–505.CrossRef Teixeira, J., & Miranda, P. M. A. (2001). Fog prediction at Lisbon airport using a one-dimensional boundary layer model. Meteorological Applications, 8, 497–505.CrossRef
go back to reference Thompson, W. T., Burk, S. D., & Lewis, J. (2005). Fog and low clouds in a coastally trapped disturbance. Journal of Geophysical Research, 110, D18213.CrossRef Thompson, W. T., Burk, S. D., & Lewis, J. (2005). Fog and low clouds in a coastally trapped disturbance. Journal of Geophysical Research, 110, D18213.CrossRef
go back to reference U.S. Department of Agriculture. (1938). Atlas of the climatic charts of the oceans. Publication No. 1247, Prepared under the supervision of W. F. McDonald, 130 charts. U.S. Weather Bureau. U.S. Department of Agriculture. (1938). Atlas of the climatic charts of the oceans. Publication No. 1247, Prepared under the supervision of W. F. McDonald, 130 charts. U.S. Weather Bureau.
go back to reference van Schalkwyk, L., & Dyson, L. (2013). Climatological characteristics of fog at Cape Town International Airport. Weather and Forecasting, 28(3), 631–646.CrossRef van Schalkwyk, L., & Dyson, L. (2013). Climatological characteristics of fog at Cape Town International Airport. Weather and Forecasting, 28(3), 631–646.CrossRef
go back to reference Vautard, R., Yiou, P., & van Oldenborgh, G. J. (2009). Decline of fog, mist and haze in Europe over the past 30 years. Nature Geoscience, 2, 115–119.CrossRef Vautard, R., Yiou, P., & van Oldenborgh, G. J. (2009). Decline of fog, mist and haze in Europe over the past 30 years. Nature Geoscience, 2, 115–119.CrossRef
go back to reference Wang, Y., Gao, S., Fu, G., Sun, J., & Zhang, S. (2014). Assimilating MTSAT-derived humidity in nowcasting sea fog over the Yellow Sea. Weather and Forecasting, 29, 205–225.CrossRef Wang, Y., Gao, S., Fu, G., Sun, J., & Zhang, S. (2014). Assimilating MTSAT-derived humidity in nowcasting sea fog over the Yellow Sea. Weather and Forecasting, 29, 205–225.CrossRef
go back to reference Wilcox, E. M. (2017). Multi-spectral remote sensing of sea fog with simultaneous passive infrared and microwave sensors (Chap. 11). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer. Wilcox, E. M. (2017). Multi-spectral remote sensing of sea fog with simultaneous passive infrared and microwave sensors (Chap. 11). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.
go back to reference Zhang, S.-P., Xie, S.-P., Liu, Q.-L., Yang, Y.-Q., Wang, X.-G., & Ren, Z.-P. (2009). Seasonal variations of Yellow Sea fog: Observations and mechanisms. Journal of Climate, 22(24), 6758–6772. Zhang, S.-P., Xie, S.-P., Liu, Q.-L., Yang, Y.-Q., Wang, X.-G., & Ren, Z.-P. (2009). Seasonal variations of Yellow Sea fog: Observations and mechanisms. Journal of Climate, 22(24), 6758–6772.
go back to reference Zhang, S., & Yi, L. (2013). A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese adjacent seas. Pure and Applied Geophysics, 170, 1931–1944.CrossRef Zhang, S., & Yi, L. (2013). A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese adjacent seas. Pure and Applied Geophysics, 170, 1931–1944.CrossRef
go back to reference Zhang, S., & Lewis, J. M. (2017). Synoptic processes (Chap. 6). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer. Zhang, S., & Lewis, J. M. (2017). Synoptic processes (Chap. 6). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting. New York: Springer.
go back to reference Zhou, B., & Du, J. (2010). Fog prediction from a multimodel mesoscale ensemble prediction system. Weather and Forecasting, 25, 303–322.CrossRef Zhou, B., & Du, J. (2010). Fog prediction from a multimodel mesoscale ensemble prediction system. Weather and Forecasting, 25, 303–322.CrossRef
go back to reference Zhou, B., Du, J., McQueen, J., Dimego, G., Manikin, G., Ferrier, B., et al. (2004) An introduction to NCEP SREF aviation project. Preprint. In 11th Conference 27 on Aviation, Range, and Aerospace, Oct 4–8, 2004. Hyannis: American Meteorological Society. Paper 9.15. Zhou, B., Du, J., McQueen, J., Dimego, G., Manikin, G., Ferrier, B., et al. (2004) An introduction to NCEP SREF aviation project. Preprint. In 11th Conference 27 on Aviation, Range, and Aerospace, Oct 4–8, 2004. Hyannis: American Meteorological Society. Paper 9.15.
Metadata
Title
Modeling and Forecasting Marine Fog
Author
Darko Koračin
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-45229-6_9