Skip to main content
Top
Published in:

01-12-2023 | Original Article

Modeling and predicting individual transitions within the homelessness system

Authors: Khandker Sadia Rahman, Charalampos Chelmis

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article 'Modeling and predicting individual transitions within the homelessness system' explores the complex issue of homelessness by introducing a sophisticated model to predict future service assignments for individuals experiencing homelessness. The model employs machine learning techniques to infer a network of homeless services from administrative data, capturing the intricate dynamics of the homeless system. By defining a similarity score for trajectories, the model predicts the most likely service an individual will be assigned to next, based on their historical data. The experimental evaluation demonstrates the model's ability to accurately match observed sequences, outperforming baseline methods. This innovative approach can serve as a building block for more complex applications, such as recommending service assignments, and addresses the need for data-driven solutions in the homelessness sector.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbott A, Tsay A (2000) Sequence analysis and optimal matching methods in sociology: review and prospect. Sociol Methods Res 29(1):3–33CrossRef Abbott A, Tsay A (2000) Sequence analysis and optimal matching methods in sociology: review and prospect. Sociol Methods Res 29(1):3–33CrossRef
go back to reference Brugere I, Gallagher B, Berger-Wolf TY (2018) Network structure inference, a survey: motivations, methods, and applications. ACM Comput Surv (CSUR) 51(2):1–39CrossRef Brugere I, Gallagher B, Berger-Wolf TY (2018) Network structure inference, a survey: motivations, methods, and applications. ACM Comput Surv (CSUR) 51(2):1–39CrossRef
go back to reference Chelmis C, Qi W, Lee W, Duncan S (2021) Smart homelessness service provision with machine learning. Proc Comput Sci 185:9–18CrossRef Chelmis C, Qi W, Lee W, Duncan S (2021) Smart homelessness service provision with machine learning. Proc Comput Sci 185:9–18CrossRef
go back to reference Chelmis C, Rahman KS (2021) Peeking through the homelessness system with a network science lens. In: Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp 69–73 Chelmis C, Rahman KS (2021) Peeking through the homelessness system with a network science lens. In: Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp 69–73
go back to reference Du N, Song L, Yuan M, Smola A (2012) Learning networks of heterogeneous influence. Adv Neural Inf Process Syst 25 Du N, Song L, Yuan M, Smola A (2012) Learning networks of heterogeneous influence. Adv Neural Inf Process Syst 25
go back to reference Elzinga CH (2006) Sequence analysis: Metric representations of categorical time series. Sociol Methods Res Elzinga CH (2006) Sequence analysis: Metric representations of categorical time series. Sociol Methods Res
go back to reference Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases. Acm Sigmod Record 23(2):419–429CrossRef Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases. Acm Sigmod Record 23(2):419–429CrossRef
go back to reference Fleury M-J, Grenier G, Sabetti J, Bertrand K, Clément M, Brochu S (2021) Met and unmet needs of homeless individuals at different stages of housing reintegration: a mixed-method investigation. PLoS ONE 16(1):0245088CrossRef Fleury M-J, Grenier G, Sabetti J, Bertrand K, Clément M, Brochu S (2021) Met and unmet needs of homeless individuals at different stages of housing reintegration: a mixed-method investigation. PLoS ONE 16(1):0245088CrossRef
go back to reference Gao Y, Das S, Fowler P (2017) Homelessness service provision: a data science perspective. In: Workshops at the Thirty-First AAAI Conference on Artificial Intelligence Gao Y, Das S, Fowler P (2017) Homelessness service provision: a data science perspective. In: Workshops at the Thirty-First AAAI Conference on Artificial Intelligence
go back to reference Gomez-Rodriguez M, Leskovec J, Krause A (2012) Inferring networks of diffusion and influence. ACM Trans Knowl Discov Data (TKDD) 5(4):1–37CrossRef Gomez-Rodriguez M, Leskovec J, Krause A (2012) Inferring networks of diffusion and influence. ACM Trans Knowl Discov Data (TKDD) 5(4):1–37CrossRef
go back to reference Heckerman D, Geiger D, Chickering DM (1995) Learning bayesian networks: the combination of knowledge and statistical data. Mach learn 20(3):197–243CrossRef Heckerman D, Geiger D, Chickering DM (1995) Learning bayesian networks: the combination of knowledge and statistical data. Mach learn 20(3):197–243CrossRef
go back to reference Henry M, de Sousa T, Roddey C, Gayen S, Joe Bednar T, Associates A (2022) The 2022 Annual Homeless Assessment Report (AHAR) to Congress. Part 1: Point-in-time estimates of homelessness. The US Department of Housing and Urban Development Henry M, de Sousa T, Roddey C, Gayen S, Joe Bednar T, Associates A (2022) The 2022 Annual Homeless Assessment Report (AHAR) to Congress. Part 1: Point-in-time estimates of homelessness. The US Department of Housing and Urban Development
go back to reference Hong B, Malik A, Lundquist J, Bellach I, Kontokosta CE (2018) Applications of machine learning methods to predict readmission and length-of-stay for homeless families: the case of win shelters in new york city. J Technol Hum Serv 36(1):89–104CrossRef Hong B, Malik A, Lundquist J, Bellach I, Kontokosta CE (2018) Applications of machine learning methods to predict readmission and length-of-stay for homeless families: the case of win shelters in new york city. J Technol Hum Serv 36(1):89–104CrossRef
go back to reference Keogh EJ, Pazzani MJ (2001) Derivative dynamic time warping. In: Proceedings of the 2001 SIAM International Conference on Data Mining, pp 1–11 Keogh EJ, Pazzani MJ (2001) Derivative dynamic time warping. In: Proceedings of the 2001 SIAM International Conference on Data Mining, pp 1–11
go back to reference Kube A, Das S, Fowler PJ (2019) Allocating interventions based on predicted outcomes: a case study on homelessness services. Proc AAAI Conf Artif Intell 33:622–629 Kube A, Das S, Fowler PJ (2019) Allocating interventions based on predicted outcomes: a case study on homelessness services. Proc AAAI Conf Artif Intell 33:622–629
go back to reference Messier G, John C, Malik A (2021) Predicting chronic homelessness: the importance of comparing algorithms using client histories. J Technol Hum Serv 40:1–12 Messier G, John C, Malik A (2021) Predicting chronic homelessness: the importance of comparing algorithms using client histories. J Technol Hum Serv 40:1–12
go back to reference Rahman KS, Chelmis C (2022) Learning to predict transitions within the homelessness system from network trajectories. In: Proceedings of the 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp 181–189 Rahman KS, Chelmis C (2022) Learning to predict transitions within the homelessness system from network trajectories. In: Proceedings of the 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp 181–189
go back to reference Sullivan AA (2022) What does it mean to be homeless? how definitions affect homelessness policy. Urban Affairs Review, 10780874221095185 Sullivan AA (2022) What does it mean to be homeless? how definitions affect homelessness policy. Urban Affairs Review, 10780874221095185
go back to reference VanBerlo B, Ross MA, Rivard J, Booker R (2021) Interpretable machine learning approaches to prediction of chronic homelessness. Eng Appl Artif Intell 102:104243CrossRef VanBerlo B, Ross MA, Rivard J, Booker R (2021) Interpretable machine learning approaches to prediction of chronic homelessness. Eng Appl Artif Intell 102:104243CrossRef
go back to reference Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J Mach Learn Res 11:2837–2854MathSciNet Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J Mach Learn Res 11:2837–2854MathSciNet
go back to reference Wang H, Su H, Zheng K, Sadiq S, Zhou X (2013) An effectiveness study on trajectory similarity measures. In: Proceedings of the Twenty-Fourth Australasian Database Conference, vol 137, pp 13–22 Wang H, Su H, Zheng K, Sadiq S, Zhou X (2013) An effectiveness study on trajectory similarity measures. In: Proceedings of the Twenty-Fourth Australasian Database Conference, vol 137, pp 13–22
go back to reference Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 947–956 Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 947–956
Metadata
Title
Modeling and predicting individual transitions within the homelessness system
Authors
Khandker Sadia Rahman
Charalampos Chelmis
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01083-y

Premium Partner