Skip to main content
Top

2019 | OriginalPaper | Chapter

14. Modeling and Simulation of Bio-inspired Nanoarmors

Authors : Stefano Signetti, Nicola M. Pugno

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The exploitation of bio-inspired solutions and of novel nanomaterials is gaining increasing attention in the field of impact protection. Indeed, especially for advanced applications, there is a growing pressure towards the reduction of the weight of protective structures without compromising their energy absorption capability. The complexity of the phenomena induced by high-energy contacts requires advanced and efficient computational models, which are also fundamental for achieving the optimum, overcoming the limits of experimental tests and physical prototyping in exploring the whole design space. At the same time, the modeling of bio-inspired toughening mechanisms requires additional capability of these methods to efficiently cover and merge different -and even disparate- size and time scales. In this chapter, we review computational methods for modeling the mechanical behavior of materials and structures under high-velocity (e.g., ballistic) impacts and crushing, with a particular focus on the nonlinear finite element method. Some recent developments in numerical simulation of impact are presented underlining merits, limits, and open problems in the modeling of bio-inspired and nanomaterial-based armors. In the end, two modeling examples, a bio-inspired ceramic-composite armor with ballistic protection capabilities and a modified honeycomb structure for energy absorption, are proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Abrate S. Ballistic impact on composites. In: Proceedings of the 16th International Conference on Composite Materials; Kyoto, Japan; 2007. Abrate S. Ballistic impact on composites. In: Proceedings of the 16th International Conference on Composite Materials; Kyoto, Japan; 2007.
4.
go back to reference Kumar BG, Singh RP, Nakamura T. Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation. J Compos Mater. 2002;36(24):2713–33.CrossRef Kumar BG, Singh RP, Nakamura T. Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation. J Compos Mater. 2002;36(24):2713–33.CrossRef
5.
go back to reference Springer GS. Environmental effects on composite materials, vol. 3. Lancaster: Technomic Publishing; 1988. Springer GS. Environmental effects on composite materials, vol. 3. Lancaster: Technomic Publishing; 1988.
6.
go back to reference Abrate S. Impact on composite structures. Cambridge/New York: Cambridge University Press; 2005. Abrate S. Impact on composite structures. Cambridge/New York: Cambridge University Press; 2005.
7.
go back to reference Hazell PJ. Armour: materials, theory and design. Boca Raton: CRC Press; 2015.CrossRef Hazell PJ. Armour: materials, theory and design. Boca Raton: CRC Press; 2015.CrossRef
8.
go back to reference LaSalvia JC, Gyekenyesi A, Halbig M. (Eds.). Advances in Ceramic Armors X. Vol. 35 of Ceramic Engineering and Science Proceedings. Wiley; 2014. ISBN: 978-1-119-04060-6. LaSalvia JC, Gyekenyesi A, Halbig M. (Eds.). Advances in Ceramic Armors X. Vol. 35 of Ceramic Engineering and Science Proceedings. Wiley; 2014. ISBN: 978-1-119-04060-6.
9.
go back to reference Liu W, Chen Z, Chen Z, Cheng X, Wang Y, Chen X, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater Des. 2015;87:31–27. Liu W, Chen Z, Chen Z, Cheng X, Wang Y, Chen X, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater Des. 2015;87:31–27.
10.
go back to reference Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.CrossRef Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.CrossRef
11.
go back to reference Zhang T, Li X, Kadkhodaei S, Gao H. Flaw insensitive fracture in nanocrystalline graphene. Nano Lett. 2012;12(9):4605–10.CrossRef Zhang T, Li X, Kadkhodaei S, Gao H. Flaw insensitive fracture in nanocrystalline graphene. Nano Lett. 2012;12(9):4605–10.CrossRef
12.
go back to reference Cranford SW. When is 6 less than 5? Penta- to hexa-graphene transition. Carbon. 2016;96:421–8.CrossRef Cranford SW. When is 6 less than 5? Penta- to hexa-graphene transition. Carbon. 2016;96:421–8.CrossRef
13.
go back to reference Lee JH, Loya PE, Loeu J, Thomas EL. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science. 2014;346:1092–6.CrossRef Lee JH, Loya PE, Loeu J, Thomas EL. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science. 2014;346:1092–6.CrossRef
14.
go back to reference Lee JH, Veysse D, Singer JP, Retsch M, Saini G, Pezeril T, et al. High strain rate deformation of layered nanocomposites. Nat Commun. 2012;3(1164):1–7. Lee JH, Veysse D, Singer JP, Retsch M, Saini G, Pezeril T, et al. High strain rate deformation of layered nanocomposites. Nat Commun. 2012;3(1164):1–7.
15.
go back to reference Yang W, Chen IH, Gludovatz B, Zimmermann EA, Ritchie RO, Meyers MA. Natural flexible dermal armour. Adv Mater. 2013;25(1):31–48.CrossRef Yang W, Chen IH, Gludovatz B, Zimmermann EA, Ritchie RO, Meyers MA. Natural flexible dermal armour. Adv Mater. 2013;25(1):31–48.CrossRef
16.
go back to reference Goldsmith WJ. IMPACT – the theory and physics of colliding solids. 2nd ed. New York: Dover Publications; 2001.MATH Goldsmith WJ. IMPACT – the theory and physics of colliding solids. 2nd ed. New York: Dover Publications; 2001.MATH
17.
go back to reference Recht RF, Ipson TW. Ballistic perforation dynamics. J Appl Mech. 1963;30(3):384–90.CrossRef Recht RF, Ipson TW. Ballistic perforation dynamics. J Appl Mech. 1963;30(3):384–90.CrossRef
18.
go back to reference Goldsmith W. Non-ideal projectile impact on targets. Int J Impact Eng. 1999;22(2–3):95–395.CrossRef Goldsmith W. Non-ideal projectile impact on targets. Int J Impact Eng. 1999;22(2–3):95–395.CrossRef
19.
go back to reference Porwal PK, Phoenix SL. Modeling system effects in ballistic impact into multi-layered fibrous materials for soft body armor. Int J Fract. 2005;135(1–4):217249.MATH Porwal PK, Phoenix SL. Modeling system effects in ballistic impact into multi-layered fibrous materials for soft body armor. Int J Fract. 2005;135(1–4):217249.MATH
20.
go back to reference Lim CT, Shim VPW, Ng YH. Finite-element modeling of the ballistic impact of fabric armor. Int J Impact Eng. 2003;28(1):13–31.CrossRef Lim CT, Shim VPW, Ng YH. Finite-element modeling of the ballistic impact of fabric armor. Int J Impact Eng. 2003;28(1):13–31.CrossRef
21.
go back to reference Signetti S, Bosia F, Pugno NM. Computational modelling of the mechanics of hierarchical materials. MRS Bull. 2016;41(9):694–9.CrossRef Signetti S, Bosia F, Pugno NM. Computational modelling of the mechanics of hierarchical materials. MRS Bull. 2016;41(9):694–9.CrossRef
22.
go back to reference Signetti S, Pugno NM. Evidence of optimal interfaces in bio-inspired ceramic-composite panels for superior ballistic protection. J Eur Ceram Soc. 2014;34(11):2823–31.CrossRef Signetti S, Pugno NM. Evidence of optimal interfaces in bio-inspired ceramic-composite panels for superior ballistic protection. J Eur Ceram Soc. 2014;34(11):2823–31.CrossRef
23.
go back to reference Wang B, Yang W, Vincent R, Sherman R, Meyers MA. Pangolin armor: overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomater. 2016;41:60–74.CrossRef Wang B, Yang W, Vincent R, Sherman R, Meyers MA. Pangolin armor: overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomater. 2016;41:60–74.CrossRef
24.
go back to reference Achrai B, Bar-On B, Wagner HD. Bending mechanics of the red-eared slider turtle carapace. J Mech Behav Biomed Mater. 2014;30:223–33.CrossRef Achrai B, Bar-On B, Wagner HD. Bending mechanics of the red-eared slider turtle carapace. J Mech Behav Biomed Mater. 2014;30:223–33.CrossRef
25.
go back to reference Bruet BJF, Song J, Boyce MC, Ortiz C. Materials design principles of ancient fish armour. Nat Mater. 2008;7(9):748–56.CrossRef Bruet BJF, Song J, Boyce MC, Ortiz C. Materials design principles of ancient fish armour. Nat Mater. 2008;7(9):748–56.CrossRef
26.
go back to reference Yang W, Sherman VR, Gludovatz B, Mackey M, Zimmermann EA, Chang EH, et al. Protective role of Arapaima gigas fish scales: structure and mechanical behavior. Acta Biomater. 2014;5(8):3599–614.CrossRef Yang W, Sherman VR, Gludovatz B, Mackey M, Zimmermann EA, Chang EH, et al. Protective role of Arapaima gigas fish scales: structure and mechanical behavior. Acta Biomater. 2014;5(8):3599–614.CrossRef
27.
go back to reference Rudykh S, Ortiz C, Boyce MC. Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor. Soft Matter. 2015;11:2547–54.CrossRef Rudykh S, Ortiz C, Boyce MC. Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor. Soft Matter. 2015;11:2547–54.CrossRef
28.
go back to reference Zimmermann EA, Gludovatz B, Schaible E, Dave NKN, Yang W, Meyers MA, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat Commun. 2013;4:2634.CrossRef Zimmermann EA, Gludovatz B, Schaible E, Dave NKN, Yang W, Meyers MA, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat Commun. 2013;4:2634.CrossRef
29.
go back to reference Li L, Ortiz C. A natural 3D interconnected laminated composite with enhanced damage resistance. Adv Funct Mater. 2015;25(23):3463–71.CrossRef Li L, Ortiz C. A natural 3D interconnected laminated composite with enhanced damage resistance. Adv Funct Mater. 2015;25(23):3463–71.CrossRef
30.
go back to reference Garrett KW, E J B. Multiple transverse fracture in 90° cross-ply laminates of a glass fibre-reinforced polyester. J Mater Sci. 1977;12(1):157–68.CrossRef Garrett KW, E J B. Multiple transverse fracture in 90° cross-ply laminates of a glass fibre-reinforced polyester. J Mater Sci. 1977;12(1):157–68.CrossRef
31.
go back to reference Currey JD. Mechanical properties and adaptations of some less familiar bony tissues. J Mech Behav Biomed Mater. 2010;3(5):357–72.CrossRef Currey JD. Mechanical properties and adaptations of some less familiar bony tissues. J Mech Behav Biomed Mater. 2010;3(5):357–72.CrossRef
32.
go back to reference Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids. 2007;55(2):306–37.CrossRef Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids. 2007;55(2):306–37.CrossRef
33.
go back to reference Sen D, Buehler MJ. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci Rep. 2011;1(35):1–9. Sen D, Buehler MJ. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci Rep. 2011;1(35):1–9.
34.
go back to reference Bosia F, Abdalrahman T, Pugno NM. Investigating the role of hierarchy on the strength of composite materials: evidence of a crucial synergy between hierarchy and material mixing. Nanoscale. 2012;4:1200–7.CrossRef Bosia F, Abdalrahman T, Pugno NM. Investigating the role of hierarchy on the strength of composite materials: evidence of a crucial synergy between hierarchy and material mixing. Nanoscale. 2012;4:1200–7.CrossRef
35.
go back to reference Dimas LS, Buehler MJ. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter. 2014;10:4436–42.CrossRef Dimas LS, Buehler MJ. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter. 2014;10:4436–42.CrossRef
36.
go back to reference Vickaryous MK, Hall BK. Osteoderm morphology and development in the nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). J Morphol. 2006;267(11):1273–83.CrossRef Vickaryous MK, Hall BK. Osteoderm morphology and development in the nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). J Morphol. 2006;267(11):1273–83.CrossRef
37.
go back to reference Rhee H, Horstemeyer MF, Hwang Y, Lim H, Kadiri HE, Trim W. A study on the structure and mechanical behavior of the Terrapene carolina carapace: a pathway to design bio-inspired synthetic composites. Mater Sci Eng C. 2009;29(8):2333–9.CrossRef Rhee H, Horstemeyer MF, Hwang Y, Lim H, Kadiri HE, Trim W. A study on the structure and mechanical behavior of the Terrapene carolina carapace: a pathway to design bio-inspired synthetic composites. Mater Sci Eng C. 2009;29(8):2333–9.CrossRef
38.
go back to reference Lin E, Li Y, Weaver JC, Ortiz C, Boyce MC. Tunability and enhancement of mechanical behavior with additively manufactured bio-inspired hierarchical suture interfaces. J Mater Res. 2014;29(17):1867–75.CrossRef Lin E, Li Y, Weaver JC, Ortiz C, Boyce MC. Tunability and enhancement of mechanical behavior with additively manufactured bio-inspired hierarchical suture interfaces. J Mater Res. 2014;29(17):1867–75.CrossRef
39.
go back to reference Vernerey FJ, Barthelat F. On the mechanics of fishscale structures. Int J Solids Struct. 2010;47(17):2268–75.MATHCrossRef Vernerey FJ, Barthelat F. On the mechanics of fishscale structures. Int J Solids Struct. 2010;47(17):2268–75.MATHCrossRef
40.
go back to reference Thielen M, Schmitt CNZ, Eckert S, Speck T, Seidel R. Structure-function relationship of the foam-like pomelo peel (Citrus maxima) an inspiration for the development of biomimetic damping materials with high energy dissipation. Bioinspir Biomim. 2013;8(2):025001.CrossRef Thielen M, Schmitt CNZ, Eckert S, Speck T, Seidel R. Structure-function relationship of the foam-like pomelo peel (Citrus maxima) an inspiration for the development of biomimetic damping materials with high energy dissipation. Bioinspir Biomim. 2013;8(2):025001.CrossRef
41.
go back to reference Fischer SF, Thielen M, Weiß P, Seidel R, Speck T, Bührig-Polaczek A, Bünck M. Production and properties of a precision-cast bio-inspired composite. J Mater Sci. 2014;49(1):43–51.CrossRef Fischer SF, Thielen M, Weiß P, Seidel R, Speck T, Bührig-Polaczek A, Bünck M. Production and properties of a precision-cast bio-inspired composite. J Mater Sci. 2014;49(1):43–51.CrossRef
42.
go back to reference Dimas LS, H G B, Eylon I, Buehler MJ. Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing. Adv Funct Mater. 2013;23(36):4629–38.CrossRef Dimas LS, H G B, Eylon I, Buehler MJ. Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing. Adv Funct Mater. 2013;23(36):4629–38.CrossRef
43.
go back to reference Aversa L, Taioli S, Nardo MV, Tatti T, Verrucchi R, Iannotta S. The interaction of C60 on Si(111) 7×7 studied by supersonic molecular beams: interplay between precursor kinetic energy and substrate temperature in surface activated processes. Front Mater. 2015;2(46):12–20. Aversa L, Taioli S, Nardo MV, Tatti T, Verrucchi R, Iannotta S. The interaction of C60 on Si(111) 7×7 studied by supersonic molecular beams: interplay between precursor kinetic energy and substrate temperature in surface activated processes. Front Mater. 2015;2(46):12–20.
44.
go back to reference Brély L, Bosia F, Pugno NM. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites. Fron Mater. 2015;2(51):64–73. Brély L, Bosia F, Pugno NM. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites. Fron Mater. 2015;2(51):64–73.
45.
go back to reference Frenkel D, Smit B. Understanding molecular simulation – from algorithms to applications. 2nd ed. San Diego: Academic; 2002.MATH Frenkel D, Smit B. Understanding molecular simulation – from algorithms to applications. 2nd ed. San Diego: Academic; 2002.MATH
46.
go back to reference Xu M, Paci JT, Oswald J, Belytschko T. A constitutive equation for graphene based on density functional theory. Int J Solids Struct. 2012;49(18):2582–9.CrossRef Xu M, Paci JT, Oswald J, Belytschko T. A constitutive equation for graphene based on density functional theory. Int J Solids Struct. 2012;49(18):2582–9.CrossRef
47.
go back to reference Tatti R, Aversa L, Verrucchi R, Cavaliere E, Garberoglio G, Pugno NM, et al. Synthesis of single layer graphene on Cu(111) by C60 supersonic molecular beam epitaxy. RSC Adv. 2016;6(44):37982–93.CrossRef Tatti R, Aversa L, Verrucchi R, Cavaliere E, Garberoglio G, Pugno NM, et al. Synthesis of single layer graphene on Cu(111) by C60 supersonic molecular beam epitaxy. RSC Adv. 2016;6(44):37982–93.CrossRef
48.
go back to reference Signetti S, Taioli S, Pugno NM. 2D materials armors showing superior impact strength of few layers. ACS Appl Mater Inter. 2017;9(46):40820–30.CrossRef Signetti S, Taioli S, Pugno NM. 2D materials armors showing superior impact strength of few layers. ACS Appl Mater Inter. 2017;9(46):40820–30.CrossRef
49.
go back to reference Yoon K, Ostadhossein A, van Duin ADT. Atomistic-scale simulations of the chemomechanical behavior of graphene under nanoprojectile impact. Carbon. 2016;99:58–64.CrossRef Yoon K, Ostadhossein A, van Duin ADT. Atomistic-scale simulations of the chemomechanical behavior of graphene under nanoprojectile impact. Carbon. 2016;99:58–64.CrossRef
50.
go back to reference Pradhan S, Hansen A, Chakrabarti BK. Failure processes in elastic fiber bundles. Rev Mod Phys. 2010;82(1):499–555.CrossRef Pradhan S, Hansen A, Chakrabarti BK. Failure processes in elastic fiber bundles. Rev Mod Phys. 2010;82(1):499–555.CrossRef
51.
go back to reference Pugno NM, Bosia F, Abdalrahman T. Hierarchical fiber bundle model to investigate the complex architectures of biological materials. Phys Rev E. 2012;85:011903.CrossRef Pugno NM, Bosia F, Abdalrahman T. Hierarchical fiber bundle model to investigate the complex architectures of biological materials. Phys Rev E. 2012;85:011903.CrossRef
52.
go back to reference Zapperi S, Vespignani A, Eugene Stanley H. Plasticity and avalanche behaviour in microfracturing phenomena. Nature. 1997;388(6643):658–60.CrossRef Zapperi S, Vespignani A, Eugene Stanley H. Plasticity and avalanche behaviour in microfracturing phenomena. Nature. 1997;388(6643):658–60.CrossRef
53.
go back to reference Pugno NM, Ruoff RS. Quantized fracture mechanics. Philos Mag. 2004;84(27):2829–45.CrossRef Pugno NM, Ruoff RS. Quantized fracture mechanics. Philos Mag. 2004;84(27):2829–45.CrossRef
54.
go back to reference Zhang Z, Zhang YW, Gao H. On optimal hierarchy of load-bearing biological materials. Proc R Soc B. 2011;278(1705):519–25.CrossRef Zhang Z, Zhang YW, Gao H. On optimal hierarchy of load-bearing biological materials. Proc R Soc B. 2011;278(1705):519–25.CrossRef
55.
go back to reference Panzavolta S, Bracci B, Gualandi C, Focarete ML, Treossi E, Kouroupis-Agalou K, et al. Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon. 2014;78:566–77.CrossRef Panzavolta S, Bracci B, Gualandi C, Focarete ML, Treossi E, Kouroupis-Agalou K, et al. Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon. 2014;78:566–77.CrossRef
56.
go back to reference Bosia F, Abdalrahman T, Pugno NM. Self-healing of hierarchical materials. Langmuir. 2014;30(4):1123–33.CrossRef Bosia F, Abdalrahman T, Pugno NM. Self-healing of hierarchical materials. Langmuir. 2014;30(4):1123–33.CrossRef
57.
go back to reference Belytschko T, Liu WK, Moran B, Elkhodary K. Nonlinear finite elements for continua and structures. 2nd ed. Hoboken: Wiley; 2013.MATH Belytschko T, Liu WK, Moran B, Elkhodary K. Nonlinear finite elements for continua and structures. 2nd ed. Hoboken: Wiley; 2013.MATH
58.
go back to reference Wriggers P. Computational contact mechanics. 2nd ed. Berlin/Heidelberg: Springer-Verlag; 2006.MATHCrossRef Wriggers P. Computational contact mechanics. 2nd ed. Berlin/Heidelberg: Springer-Verlag; 2006.MATHCrossRef
59.
go back to reference Hallquist JO, Goudreau GL, Benson DJ. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng. 1985;51(1):107–37.MathSciNetMATHCrossRef Hallquist JO, Goudreau GL, Benson DJ. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng. 1985;51(1):107–37.MathSciNetMATHCrossRef
60.
go back to reference Cuniff PM. Dimensionless parameters for optimization of textile-based body armor systems. In: Proceedings of the 18th International Symposium of Ballistics. San Antonio; 1999. p. 1303–10. Cuniff PM. Dimensionless parameters for optimization of textile-based body armor systems. In: Proceedings of the 18th International Symposium of Ballistics. San Antonio; 1999. p. 1303–10.
61.
go back to reference Cuniff PM. Analysis of the system effects in woven fabrics under ballistic impact. Text Res J. 1992;62(9):495–509.CrossRef Cuniff PM. Analysis of the system effects in woven fabrics under ballistic impact. Text Res J. 1992;62(9):495–509.CrossRef
62.
go back to reference Belytschko T, Ong JSJ, Liu WK, Kennedy JM. Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng. 1984;43(3):251–76.MATHCrossRef Belytschko T, Ong JSJ, Liu WK, Kennedy JM. Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng. 1984;43(3):251–76.MATHCrossRef
63.
go back to reference Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids. 2000;48(1):175–209.MathSciNetMATHCrossRef Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids. 2000;48(1):175–209.MathSciNetMATHCrossRef
64.
go back to reference Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Comput Struct. 2005;83(17–18):1526–35.CrossRef Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Comput Struct. 2005;83(17–18):1526–35.CrossRef
66.
go back to reference Parks ML, Lehoucq RB, Plimpton SJ, Silling SA. Implementing peridynamics within a molecular dynamics code. Comput Phys Commun. 2008;179(11):777–83.MATHCrossRef Parks ML, Lehoucq RB, Plimpton SJ, Silling SA. Implementing peridynamics within a molecular dynamics code. Comput Phys Commun. 2008;179(11):777–83.MATHCrossRef
67.
go back to reference Silling SA, Bobaru F. Peridynamic modeling of membranes and fibers. Int J Non-Linear Mech. 2005;40(2–3):395–409.MATHCrossRef Silling SA, Bobaru F. Peridynamic modeling of membranes and fibers. Int J Non-Linear Mech. 2005;40(2–3):395–409.MATHCrossRef
68.
go back to reference Lee J, Liu W, Hong JW. Impact fracture analysis enhanced by contact of peridynamic and finite element formulations. Int J Impact Eng. 2016;87:108–19.CrossRef Lee J, Liu W, Hong JW. Impact fracture analysis enhanced by contact of peridynamic and finite element formulations. Int J Impact Eng. 2016;87:108–19.CrossRef
69.
go back to reference Lepore E, Bonaccorso F, Bruna M, Bosia F, Taioli S, Garberoglio G, et al. Silk reinforced with graphene or carbon nanotubes spun by spiders. arXiv. 2016. (arXiv:1504.06751 [cond-mat.mtrl-sci]) 2D Mater. 2017; 4(3):031013. Lepore E, Bonaccorso F, Bruna M, Bosia F, Taioli S, Garberoglio G, et al. Silk reinforced with graphene or carbon nanotubes spun by spiders. arXiv. 2016. (arXiv:1504.06751 [cond-mat.mtrl-sci]) 2D Mater. 2017; 4(3):031013.
70.
go back to reference Forrestal MJ, Tzou DY. A spherical cavity-expansion penetration model for concrete targets. Int J Solids Struct. 1997;34(31–32):4127–46.MATHCrossRef Forrestal MJ, Tzou DY. A spherical cavity-expansion penetration model for concrete targets. Int J Solids Struct. 1997;34(31–32):4127–46.MATHCrossRef
71.
go back to reference Ben-Dor G, Dubinsky A, Elperin T. High-speed penetration modeling and shape optimization of the projectile penetrating into concrete shields. Mech Based Des Struct Mach. 2009;37(4):538–49.CrossRef Ben-Dor G, Dubinsky A, Elperin T. High-speed penetration modeling and shape optimization of the projectile penetrating into concrete shields. Mech Based Des Struct Mach. 2009;37(4):538–49.CrossRef
72.
go back to reference Jacobs MJN, Dingenen JLJV. Ballistic protection mechanisms in personal armour. J Mater Sci. 2001;36(13):3137–42.CrossRef Jacobs MJN, Dingenen JLJV. Ballistic protection mechanisms in personal armour. J Mater Sci. 2001;36(13):3137–42.CrossRef
73.
go back to reference Johnson GR, Holmquist TJ. An improved computational constitutive model for brittle materials. AIP Conf Proc. 1994;309(1):981–4.CrossRef Johnson GR, Holmquist TJ. An improved computational constitutive model for brittle materials. AIP Conf Proc. 1994;309(1):981–4.CrossRef
74.
go back to reference Cronin DS, Bui K, Kauffmann C, McIntosh G, Berstad T. Implementation and validation of the Johnson-Holmquist ceramic material model in Ls-Dyna. In: 4th European LS-DYNA Users Conferences; Ulm, Germany; 2011. p. 47–60. Cronin DS, Bui K, Kauffmann C, McIntosh G, Berstad T. Implementation and validation of the Johnson-Holmquist ceramic material model in Ls-Dyna. In: 4th European LS-DYNA Users Conferences; Ulm, Germany; 2011. p. 47–60.
75.
go back to reference Hetherington JG. The optimization of two component composite armours. Int J Impact Eng. 1992;12(3):409–14.CrossRef Hetherington JG. The optimization of two component composite armours. Int J Impact Eng. 1992;12(3):409–14.CrossRef
76.
go back to reference Matzenmiller A, Lubliner J, Taylor RL. A constitutive model for anisotropic damage in fiber-composites. Mech Mater. 1995;20(2):125–52.CrossRef Matzenmiller A, Lubliner J, Taylor RL. A constitutive model for anisotropic damage in fiber-composites. Mech Mater. 1995;20(2):125–52.CrossRef
77.
go back to reference Miller W, Smith CW, Scarpa F, Evans KE. Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos Sci Technol. 2010;70(7):1049–56.CrossRef Miller W, Smith CW, Scarpa F, Evans KE. Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos Sci Technol. 2010;70(7):1049–56.CrossRef
78.
go back to reference Chen Q, Pugno NM, Zhao K, Li Z. Mechanical properties of a hollow-cylindrical-joint honeycomb. Compos Struct. 2014;109:68–74.CrossRef Chen Q, Pugno NM, Zhao K, Li Z. Mechanical properties of a hollow-cylindrical-joint honeycomb. Compos Struct. 2014;109:68–74.CrossRef
79.
go back to reference Chen Q, Shi Q, Signetti S, Sun F, Li Z, Zhu F, et al. Plastic collapse of cylindrical shellplate periodic honeycombs under uniaxial compression: experimental and numerical analyses. Int J Mech Sci. 2016;111–112:125–33.CrossRef Chen Q, Shi Q, Signetti S, Sun F, Li Z, Zhu F, et al. Plastic collapse of cylindrical shellplate periodic honeycombs under uniaxial compression: experimental and numerical analyses. Int J Mech Sci. 2016;111–112:125–33.CrossRef
80.
go back to reference Gibson LJ, Ashby MF. Cellular solids – structure and properties. 2nd ed. Cambridge/New York: Cambridge University Press; 1999.MATH Gibson LJ, Ashby MF. Cellular solids – structure and properties. 2nd ed. Cambridge/New York: Cambridge University Press; 1999.MATH
81.
go back to reference Andrews KRF, England GL, Ghani E. Classification of the axial collapse of cylindrical tubes under quasi-static loading. Int J Mech Sci. 1983;25:687–96.CrossRef Andrews KRF, England GL, Ghani E. Classification of the axial collapse of cylindrical tubes under quasi-static loading. Int J Mech Sci. 1983;25:687–96.CrossRef
82.
go back to reference Nedjari S, Schlatter G, Hébraud A. Thick electrospun honeycomb scaffolds with controlled pore size. Mater Lett. 2015;142:180–3.CrossRef Nedjari S, Schlatter G, Hébraud A. Thick electrospun honeycomb scaffolds with controlled pore size. Mater Lett. 2015;142:180–3.CrossRef
83.
go back to reference Applegate MB, Coburn J, Partlow BP, Moreau JE, Mondia JP, Marelli B, et al. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proc Natl Acad Sci. 2015;112(39):12052–7.CrossRef Applegate MB, Coburn J, Partlow BP, Moreau JE, Mondia JP, Marelli B, et al. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proc Natl Acad Sci. 2015;112(39):12052–7.CrossRef
85.
go back to reference Chen S., Liu Q, He G., et al. Reticulated Carbon Foam Derived From a Sponge-Like Natural Product as a High Performance Anode in Microbial Fuel Cells. J. Mat. Chem. 2012;22:18609–18613CrossRef Chen S., Liu Q, He G., et al. Reticulated Carbon Foam Derived From a Sponge-Like Natural Product as a High Performance Anode in Microbial Fuel Cells. J. Mat. Chem. 2012;22:18609–18613CrossRef
Metadata
Title
Modeling and Simulation of Bio-inspired Nanoarmors
Authors
Stefano Signetti
Nicola M. Pugno
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_15

Premium Partners