Skip to main content
Top
Published in: Wireless Personal Communications 4/2022

03-11-2021

Modeling and Simulation of Molecular Communication Based Nanonetwork Using Finite Shaped Spherical Receiver

Authors: Garima Singh, Gurjit Kaur

Published in: Wireless Personal Communications | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we have presented an analytical diffusion-based molecular communication system for nanonetwork with a finite spherical receiver in a three dimensional fluid channel. Use of finite shaped spherical absorbing receiver is one of the driving forces behind the study of this molecular communication system model. We have derived the mathematical expression to calculate the exact number of which got absorbed by the spherical receiver molecules expected at any time duration. For this, we have formulated a mathematical expression to calculate life expectancy of molecules propagating through Brownian motion. We also calculated the total number of time slots for which the molecules can survive. To enhance the practical feasibility, the molecules of previous slot are also being considered for a particular time slot. In this proposed system, the transmitted information is encoded by the number of molecules and modulated via M-ary modulation schemes. Since the diffusion coefficient of fluid medium and modulation schemes are crucial parameters for the channel capacity, so an exhaustive analysis for the channel capacity has been done using maximum likelihood detection at the finite spherical receiver and simulated results are presented accordingly. Importantly, our proposed system will act like a benchmark to setup a molecular communication based nanonetwork for finite shape spherical receiver.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Llatser, I., Demiray, D., Cabellos-Aparicio, A., Altilar, D. T., & Alarcón, E. (2014). N3Sim: Simulation framework for diffusion-based molecular communication nanonetworks. Simulation Modelling Practice and Theory, 42, 210–222.CrossRef Llatser, I., Demiray, D., Cabellos-Aparicio, A., Altilar, D. T., & Alarcón, E. (2014). N3Sim: Simulation framework for diffusion-based molecular communication nanonetworks. Simulation Modelling Practice and Theory, 42, 210–222.CrossRef
2.
go back to reference Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., & Arima, K. (2005). Molecular communication for nanomachines using intercellular calcium signaling. In 5th IEEE conference on nanotechnology, pp. 478–481, IEEE. Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., & Arima, K. (2005). Molecular communication for nanomachines using intercellular calcium signaling. In 5th IEEE conference on nanotechnology, pp. 478–481, IEEE.
3.
go back to reference Farsad, N., Yilmaz, H. B., Eckford, A., Chae, C.-B., & Guo, W. (2016). A comprehensive survey of recent advancements in molecular communication. IEEE Communications Surveys and Tutorials, 18(3), 1887–1919.CrossRef Farsad, N., Yilmaz, H. B., Eckford, A., Chae, C.-B., & Guo, W. (2016). A comprehensive survey of recent advancements in molecular communication. IEEE Communications Surveys and Tutorials, 18(3), 1887–1919.CrossRef
4.
go back to reference Kuran, M. S., Yilmaz, H. B., Tugcu, T., & Akyildiz, I. F. (2012). Interference effects on modulation techniques in diffusion based nanonetworks. Nano Communication Networks, 3(1), 65–73.CrossRef Kuran, M. S., Yilmaz, H. B., Tugcu, T., & Akyildiz, I. F. (2012). Interference effects on modulation techniques in diffusion based nanonetworks. Nano Communication Networks, 3(1), 65–73.CrossRef
5.
go back to reference Kadloor, S., Adve, R. S., & Eckford, A. W. (2012). Molecular communication using Brownian motion with drift. IEEE Transactions on Nanobioscience, 11(2), 89–99.CrossRef Kadloor, S., Adve, R. S., & Eckford, A. W. (2012). Molecular communication using Brownian motion with drift. IEEE Transactions on Nanobioscience, 11(2), 89–99.CrossRef
6.
go back to reference Kim, N. R., & Chae, C. B. (2013). Novel modulation techniques using isomers as messenger molecules for nano communication networks via diffusion. IEEE Journal on Selected Areas in Communication, 31(12), 847–856.CrossRef Kim, N. R., & Chae, C. B. (2013). Novel modulation techniques using isomers as messenger molecules for nano communication networks via diffusion. IEEE Journal on Selected Areas in Communication, 31(12), 847–856.CrossRef
7.
go back to reference Kuran, M. S., Yilmaz, H. B., Tugcu, T., & Akyildiz, I. F. (2011). Modulation techniques for communication via diffusion in nanonetworks. In Proceedings of IEEE international conference communication, Kyoto, Japan, pp. 1–5. Kuran, M. S., Yilmaz, H. B., Tugcu, T., & Akyildiz, I. F. (2011). Modulation techniques for communication via diffusion in nanonetworks. In Proceedings of IEEE international conference communication, Kyoto, Japan, pp. 1–5.
8.
go back to reference Mahfuz, M. U., Makrakis, D., & Mouftah, H. T. (2010). On the characterization of binary concentration-encoded molecular communication in nanonetworks. Nano Communication Networks, 1(4), 289–300.CrossRef Mahfuz, M. U., Makrakis, D., & Mouftah, H. T. (2010). On the characterization of binary concentration-encoded molecular communication in nanonetworks. Nano Communication Networks, 1(4), 289–300.CrossRef
9.
go back to reference Bicen, A., & Akyildiz, I. (2013). System-theoretic analysis and least-squares design of microfluidic channels for flow-induced molecular communication. IEEE Transactions on Signal Processing, 61(20), 5000–5013.MathSciNetCrossRef Bicen, A., & Akyildiz, I. (2013). System-theoretic analysis and least-squares design of microfluidic channels for flow-induced molecular communication. IEEE Transactions on Signal Processing, 61(20), 5000–5013.MathSciNetCrossRef
10.
go back to reference Hiyama, S., & Moritani, Y. (2010). Molecular communication: Harnessing biochemical materials to engineer biomimetic communication systems. Nano Communication Network, 1(1), 20–30.CrossRef Hiyama, S., & Moritani, Y. (2010). Molecular communication: Harnessing biochemical materials to engineer biomimetic communication systems. Nano Communication Network, 1(1), 20–30.CrossRef
11.
go back to reference Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., & Arima, K. (2005). Molecular communication for nanomachines using intercellular calcium signaling. In: Fifth IEEE conference on nanotechnology, Vol. 2, pp. 478–481. Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., & Arima, K. (2005). Molecular communication for nanomachines using intercellular calcium signaling. In: Fifth IEEE conference on nanotechnology, Vol. 2, pp. 478–481.
12.
go back to reference Singhal, A., Mallik, R. K., & Lall, B. (2015). Performance analysis of amplitude modulation schemes for diffusion-based molecular communication. IEEE Transactions on Wireless Communications, 14(10), 5681–5691.CrossRef Singhal, A., Mallik, R. K., & Lall, B. (2015). Performance analysis of amplitude modulation schemes for diffusion-based molecular communication. IEEE Transactions on Wireless Communications, 14(10), 5681–5691.CrossRef
13.
go back to reference Eckford, A. W. (2007). Nanoscale communication with Brownian motion. In Processing Conference Information Science System, Baltimore, MD, USA, (pp. 160–165). Eckford, A. W. (2007). Nanoscale communication with Brownian motion. In Processing Conference Information Science System, Baltimore, MD, USA, (pp. 160–165).
14.
go back to reference Einolghozati, A., Sardari, M., Beirami, A., & Fekri, F. (2011). Capacity of discrete molecular diffusion channels. In Proceedings of IEEE international symposium on information theory (ISIT), St. Petersburg, Russia, pp. 723–727. Einolghozati, A., Sardari, M., Beirami, A., & Fekri, F. (2011). Capacity of discrete molecular diffusion channels. In Proceedings of IEEE international symposium on information theory (ISIT), St. Petersburg, Russia, pp. 723–727.
15.
go back to reference Pandey, N., Mallik, R. K., & Lall, B. (2019). Performance analysis of diffusive molecular timing channels. IET Communications, 13(18), 3059–3067.CrossRef Pandey, N., Mallik, R. K., & Lall, B. (2019). Performance analysis of diffusive molecular timing channels. IET Communications, 13(18), 3059–3067.CrossRef
16.
go back to reference Srinivas, K. V., Eckford, A. W., & Adve, R. S. (2012). Molecular communication in fluid media: The additive Inverse Gaussian noise channel. IEEE Transactions on Information Theory, 58(7), 4678–4692.MathSciNetCrossRef Srinivas, K. V., Eckford, A. W., & Adve, R. S. (2012). Molecular communication in fluid media: The additive Inverse Gaussian noise channel. IEEE Transactions on Information Theory, 58(7), 4678–4692.MathSciNetCrossRef
17.
go back to reference Li, H., Moser, S. M., & Guo, D. (2014). Capacity of the memoryless additive inverse Gaussian noise channel. IEEE Journal on Selected Areas in Communications, 32(12), 2315–2329.CrossRef Li, H., Moser, S. M., & Guo, D. (2014). Capacity of the memoryless additive inverse Gaussian noise channel. IEEE Journal on Selected Areas in Communications, 32(12), 2315–2329.CrossRef
18.
go back to reference Mahfuz, M. U., Makrakis, D., & Mouftah, H. T. (2014). Strength-based optimum signal detection in concentration-encoded pulse-transmitted OOK molecular communication with stochastic ligand-receptor binding. Simulation Modelling Practice and Theory, 42, 189–209.CrossRef Mahfuz, M. U., Makrakis, D., & Mouftah, H. T. (2014). Strength-based optimum signal detection in concentration-encoded pulse-transmitted OOK molecular communication with stochastic ligand-receptor binding. Simulation Modelling Practice and Theory, 42, 189–209.CrossRef
19.
go back to reference Pandey, N., Mallik, R. K., & Lall, B. (2017). Truncated Lévy statistics for diffusion based molecular communication. In: IEEE global communications conference, pp. 1–6. Pandey, N., Mallik, R. K., & Lall, B. (2017). Truncated Lévy statistics for diffusion based molecular communication. In: IEEE global communications conference, pp. 1–6.
20.
go back to reference Nakano, T., Okaie, Y., & Liu, J. Q. (2012). Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Communications Letters, 16(6), 797–800.CrossRef Nakano, T., Okaie, Y., & Liu, J. Q. (2012). Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Communications Letters, 16(6), 797–800.CrossRef
21.
go back to reference Pandey, N., Joshi, S., & Mallik, R. K. (2021). Characterizing the probability of collision between information particles in molecular communications. IEEE Wireless Communications Letters, 10(6), 1252–1255.CrossRef Pandey, N., Joshi, S., & Mallik, R. K. (2021). Characterizing the probability of collision between information particles in molecular communications. IEEE Wireless Communications Letters, 10(6), 1252–1255.CrossRef
22.
go back to reference Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., et al. (2010). Essential cell biology. New York: Garland Science. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., et al. (2010). Essential cell biology. New York: Garland Science.
23.
go back to reference Yilmaz, H. B., Heren, A. C., & Tugcu, T. (2014). Three-dimensional channel characteristics for molecular communications with an absorbing receiver. IEEE Communications Letters, 18(6), 929–932.CrossRef Yilmaz, H. B., Heren, A. C., & Tugcu, T. (2014). Three-dimensional channel characteristics for molecular communications with an absorbing receiver. IEEE Communications Letters, 18(6), 929–932.CrossRef
24.
go back to reference Moore, M. J., Nakano, T., Enomoto, A., & Suda, T. (2012). Measuring distance from single spike feedback signals in molecular communication. IEEE Transactions on Signal Processing, 60(7), 3576–3587.MathSciNetCrossRef Moore, M. J., Nakano, T., Enomoto, A., & Suda, T. (2012). Measuring distance from single spike feedback signals in molecular communication. IEEE Transactions on Signal Processing, 60(7), 3576–3587.MathSciNetCrossRef
25.
go back to reference ShahMohammadian, H., Messier, G. G., & Magierowski, S. (2013). Blind synchronization in diffusion-based molecular communication channels. IEEE Communication Letter, 17(11), 2156–2159.CrossRef ShahMohammadian, H., Messier, G. G., & Magierowski, S. (2013). Blind synchronization in diffusion-based molecular communication channels. IEEE Communication Letter, 17(11), 2156–2159.CrossRef
26.
go back to reference ShahMohammadian, H., Messier, G. G., & Magierowski, S. (2012). Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels. Nano Communication Network, 3(3), 183–195.CrossRef ShahMohammadian, H., Messier, G. G., & Magierowski, S. (2012). Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels. Nano Communication Network, 3(3), 183–195.CrossRef
27.
go back to reference Trees, H. L. V. (2001). Detection, estimation, and modulation theory, Part I. Newark: Wiley.CrossRef Trees, H. L. V. (2001). Detection, estimation, and modulation theory, Part I. Newark: Wiley.CrossRef
Metadata
Title
Modeling and Simulation of Molecular Communication Based Nanonetwork Using Finite Shaped Spherical Receiver
Authors
Garima Singh
Gurjit Kaur
Publication date
03-11-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09277-3

Other articles of this Issue 4/2022

Wireless Personal Communications 4/2022 Go to the issue