Skip to main content
Top

2024 | OriginalPaper | Chapter

Modeling and Simulation of Vacuum Arc Considering the Influence of Anode Melting Pool Protrusions

Authors : Haibo Su, Rui Li, Jun Xiong, Yong Wang, Junxiang Liu, Lu Zhu, Hongbin Wang, Zeng Yang

Published in: Proceedings of The 6th International Conference on Clean Energy and Electrical Systems

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

When the vacuum circuit breaker interrupts the high current, the anode surface experiences a significant influx of energy, leading to rapid heating and subsequent melting. Simultaneously, a substantial quantity of metal vapor is generated through evaporation, entering the arc column to interact with the cathode plasma. This paper establishes a vacuum arc burning model that considers the impact of anode melting pool protrusions on the characteristics of the vacuum arc. The results demonstrate that as the number of protrusions increases, the density of neutral atomic vapor also rises. This is due to the larger tip area of big protrusions, resulting in more widely distributed jets. Additionally, larger protrusions worsen the uneven distribution of ions, causing accumulation near the electrode’s edge. When the protrusions are symmetrically distributed around the melting pool, the ion pressure distribution is also symmetrically distributed, and the pressure peak increases with the increase in the number and size of protrusions. When the protrusions are symmetrically distributed on both sides of the anode melting pool, the distribution of their axial ion velocity is also symmetrical. The shape and geometric features of large protrusions may lead to exacerbating asymmetries during ion transport.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Slade, P.G.: The Vacuum Interrupter: Theory, Design, and Application. CRC Press, Boca Raton (2017) Slade, P.G.: The Vacuum Interrupter: Theory, Design, and Application. CRC Press, Boca Raton (2017)
2.
go back to reference Vardelle, A., Fauchais, P., Dussoubs, B., Themelis, N.J.: Heat Generation and Particle Injection in a Thermal Plasma Torch. Vardelle, A., Fauchais, P., Dussoubs, B., Themelis, N.J.: Heat Generation and Particle Injection in a Thermal Plasma Torch.
3.
go back to reference Chapelle, P., Bellot, J.P., Duval, H., Jardy, A., Ablitzer, D.: Modelling of plasma generation and expansion in a vacuum arc: application to the vacuum arc remelting process. J. Phys. D: Appl. Phys. 35, 137 (2001)CrossRef Chapelle, P., Bellot, J.P., Duval, H., Jardy, A., Ablitzer, D.: Modelling of plasma generation and expansion in a vacuum arc: application to the vacuum arc remelting process. J. Phys. D: Appl. Phys. 35, 137 (2001)CrossRef
4.
go back to reference Zhao, L., Wang, Z., Su, F., Bai, X., Ren, J., Wang, T., Huang, X.: Research on magnetic field distribution between electrodes in vacuum interrupter. IEEJ Trans. Electr. Electron. Eng. 15, 1591–1603 (2020)CrossRef Zhao, L., Wang, Z., Su, F., Bai, X., Ren, J., Wang, T., Huang, X.: Research on magnetic field distribution between electrodes in vacuum interrupter. IEEJ Trans. Electr. Electron. Eng. 15, 1591–1603 (2020)CrossRef
5.
go back to reference Huang, X., Wang, L., Deng, J., Jia, S., Qin, K., Shi, Z.: Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts. J. Phys. D: Appl. Phys. 49, 075202 (2016)CrossRef Huang, X., Wang, L., Deng, J., Jia, S., Qin, K., Shi, Z.: Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts. J. Phys. D: Appl. Phys. 49, 075202 (2016)CrossRef
6.
go back to reference Gellert, B., Schade, E., Dullni, E.: Measurement of particles and vapor density after high-current vacuum arcs by laser techniques. IEEE Trans. Plasma Sci. 15, 545–551 (1987)CrossRef Gellert, B., Schade, E., Dullni, E.: Measurement of particles and vapor density after high-current vacuum arcs by laser techniques. IEEE Trans. Plasma Sci. 15, 545–551 (1987)CrossRef
7.
go back to reference Schade, E., Shmelev, D.: Numerical simulation of high-current vacuum arcs in external magnetic fields taking into account essential anode evaporation. In: XXIst International Symposium on Discharges and Electrical Insulation in Vacuum, 2004. Proceedings. ISDEIV. 411–414 (2004). Schade, E., Shmelev, D.: Numerical simulation of high-current vacuum arcs in external magnetic fields taking into account essential anode evaporation. In: XXIst International Symposium on Discharges and Electrical Insulation in Vacuum, 2004. Proceedings. ISDEIV. 411–414 (2004).
8.
go back to reference Jia, S., Zhang, L., Wang, L., Chen, B., Shi, Z., Sun, W.: Numerical simulation of high-current vacuum arcs under axial magnetic fields with consideration of current density distribution at cathode. IEEE Trans. Plasma Sci. 39, 3233–3243 (2011)CrossRef Jia, S., Zhang, L., Wang, L., Chen, B., Shi, Z., Sun, W.: Numerical simulation of high-current vacuum arcs under axial magnetic fields with consideration of current density distribution at cathode. IEEE Trans. Plasma Sci. 39, 3233–3243 (2011)CrossRef
9.
go back to reference Yang, D., Wang, L., Jia, S., Wang, L., Shi, Z., Li, Y.: Experimental investigation of anode activities in high-current vacuum arcs. IEEE Trans. Plasma Sci. 38, 206–213 (2010)CrossRef Yang, D., Wang, L., Jia, S., Wang, L., Shi, Z., Li, Y.: Experimental investigation of anode activities in high-current vacuum arcs. IEEE Trans. Plasma Sci. 38, 206–213 (2010)CrossRef
10.
go back to reference Batrakov, A.V., Popov, S.A., Schneider, A.V., Sandolache, G., Rowe, S.W.: Observation of the plasma plume at the anode of high-current vacuum arc. IEEE Trans Plasma Sci. 39, 1291–1295 (2011)CrossRef Batrakov, A.V., Popov, S.A., Schneider, A.V., Sandolache, G., Rowe, S.W.: Observation of the plasma plume at the anode of high-current vacuum arc. IEEE Trans Plasma Sci. 39, 1291–1295 (2011)CrossRef
11.
go back to reference Wang, L., Jia, S., Zhou, X., Wang, H., Shi, Z.: Three-dimensional model and simulation of vacuum arcs under axial magnetic fields. Phys. Plasmas. 19, 013507 (2012)CrossRef Wang, L., Jia, S., Zhou, X., Wang, H., Shi, Z.: Three-dimensional model and simulation of vacuum arcs under axial magnetic fields. Phys. Plasmas. 19, 013507 (2012)CrossRef
12.
go back to reference Schade, E., Shmelev, D.L.: Numerical simulation of high-current vacuum arcs with an external axial magnetic field. IEEE Trans. Plasma Sci. 31, 890–901 (2003)CrossRef Schade, E., Shmelev, D.L.: Numerical simulation of high-current vacuum arcs with an external axial magnetic field. IEEE Trans. Plasma Sci. 31, 890–901 (2003)CrossRef
13.
go back to reference Popov, S.A., et al.: Anode jet in a high-current vacuum arc. Tech. Phys. 57(7), 938–944 (2012)CrossRef Popov, S.A., et al.: Anode jet in a high-current vacuum arc. Tech. Phys. 57(7), 938–944 (2012)CrossRef
14.
go back to reference Schellekens, H., Schulman, M.B.: Contact temperature and erosion in high-current diffuse vacuum arcs on axial magnetic field contacts. IEEE Trans. Plasma Sci. 29, 452–461 (2001)CrossRef Schellekens, H., Schulman, M.B.: Contact temperature and erosion in high-current diffuse vacuum arcs on axial magnetic field contacts. IEEE Trans. Plasma Sci. 29, 452–461 (2001)CrossRef
15.
go back to reference Tian, Y., Wang, Z., Geng, Y., Liu, Z.: Simulation of heat transfer and fluid flow in an anode melting pool under high-current vacuum arcs. In: 2013 2nd International Conference on Electric Power Equipment – Switching Technology (ICEPE-ST), pp. 1–4. IEEE, Matsue-City, Japan (2013) Tian, Y., Wang, Z., Geng, Y., Liu, Z.: Simulation of heat transfer and fluid flow in an anode melting pool under high-current vacuum arcs. In: 2013 2nd International Conference on Electric Power Equipment – Switching Technology (ICEPE-ST), pp. 1–4. IEEE, Matsue-City, Japan (2013)
16.
go back to reference Wang, L., Zhang, X., Deng, J., Yang, Z., Jia, S.: Research progress of model of vacuum arc and anode activity under axial magnetic fields. IEEE Trans. Plasma Sci. 47, 3496–3507 (2019)CrossRef Wang, L., Zhang, X., Deng, J., Yang, Z., Jia, S.: Research progress of model of vacuum arc and anode activity under axial magnetic fields. IEEE Trans. Plasma Sci. 47, 3496–3507 (2019)CrossRef
17.
go back to reference Wang, Z., Tian, Y., Ma, H., Geng, Y., Liu, Z.: Decay modes of anode surface temperature after current zero in vacuum arcs—Part II: theoretical study of dielectric recovery strength. IEEE Trans. Plasma Sci. 43, 3734–3743 (2015)CrossRef Wang, Z., Tian, Y., Ma, H., Geng, Y., Liu, Z.: Decay modes of anode surface temperature after current zero in vacuum arcs—Part II: theoretical study of dielectric recovery strength. IEEE Trans. Plasma Sci. 43, 3734–3743 (2015)CrossRef
Metadata
Title
Modeling and Simulation of Vacuum Arc Considering the Influence of Anode Melting Pool Protrusions
Authors
Haibo Su
Rui Li
Jun Xiong
Yong Wang
Junxiang Liu
Lu Zhu
Hongbin Wang
Zeng Yang
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-5775-6_2