Skip to main content
Top

2019 | OriginalPaper | Chapter

26. Modeling High-Speed Impact Failure of Metallic Materials: Nonlocal Approaches

Authors : George Z. Voyiadjis, Babür Deliktaş

Published in: Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Development and application of advanced, computationally intensive multiscale (macro-, meso-, and micro-mechanically) physically based models to describe physical phenomena associated with friction and wear in heterogeneous solids, particularly under high velocity impact loading conditions. Emphasis will be placed on the development of fundamental, thermodynamically consistent theories to describe high-velocity material wear failure processes in combinations of ductile and brittle materials for wear damage-related problems. The wear failure criterion will be based on dissipated energies due to plastic strains at elevated temperatures. Frictional coefficients will be identified for the contact surfaces based on temperature, strain rates, and roughness of the surfaces. In addition failure models for microstructural effects, such as shear bands and localized deformations, will be studied.
The computations will be carried with Abaqus Explicit as a dynamic temperature-displacement analysis. The contact between sliding against each other’s surfaces is specified as surface-to-surface contact on the master-slave basis. The tangential behavior is defined as kinematic contact with finite sliding. The validation of computations utilizing the novel approach presented in this work is going to be conducted on the continuum level while comparing the obtained numerical results with the experimental results obtained in the laboratories in Metz, France. Reaction forces due to friction between the two specimens and temperature resulting from the dissipated energy during the friction experiment are going to be compared and discussed in detail. Additionally the indentation response at the macroscale, for decreasing the size of the indenter, will be used to critically assess and evaluate the length scale parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference R.K. Abu Al-Rub, G.Z. Voyiadjis, Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. Int. J. Plast. 20, 1139–1182 (2004)CrossRef R.K. Abu Al-Rub, G.Z. Voyiadjis, Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. Int. J. Plast. 20, 1139–1182 (2004)CrossRef
go back to reference K.E. Aifantis, J.R. Willis, Scale effects induced by strain gradient plasticity and interfacial resistance in periodic and randomly heterogeneous media. Mech. Mater. 38, 702–716 (2006)CrossRef K.E. Aifantis, J.R. Willis, Scale effects induced by strain gradient plasticity and interfacial resistance in periodic and randomly heterogeneous media. Mech. Mater. 38, 702–716 (2006)CrossRef
go back to reference L. Anand, M.E. Gurtin, S.P. Lele, C. Gething, A one-dimensional theory of strain-gradient plasticity: formulation, analysis, numerical results. J. Mech. Phys. Solids 53, 1789–1826 (2005)MathSciNetCrossRef L. Anand, M.E. Gurtin, S.P. Lele, C. Gething, A one-dimensional theory of strain-gradient plasticity: formulation, analysis, numerical results. J. Mech. Phys. Solids 53, 1789–1826 (2005)MathSciNetCrossRef
go back to reference K. Arakawa, Effect of time derivative of contact area on dynamic friction. Appl. Phys. Lett. 104, 241603 (2014)CrossRef K. Arakawa, Effect of time derivative of contact area on dynamic friction. Appl. Phys. Lett. 104, 241603 (2014)CrossRef
go back to reference K. Arakawa, An analytical model of dynamic sliding friction during impact. Sci. Rep. 7, 40102 (2017)CrossRef K. Arakawa, An analytical model of dynamic sliding friction during impact. Sci. Rep. 7, 40102 (2017)CrossRef
go back to reference R.J. Asaro, Crystal plasticity. J. Appl. Mech. Trans. Asme. 50, 921–934 (1983)CrossRef R.J. Asaro, Crystal plasticity. J. Appl. Mech. Trans. Asme. 50, 921–934 (1983)CrossRef
go back to reference L. Bardella, A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 54, 128–160 (2006)MathSciNetCrossRef L. Bardella, A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 54, 128–160 (2006)MathSciNetCrossRef
go back to reference L. Bardella, Some remarks on the strain gradient crystal plasticity, with particular reference to the material length scales involved. Int. J. Plast. 23, 296–322 (2007)CrossRef L. Bardella, Some remarks on the strain gradient crystal plasticity, with particular reference to the material length scales involved. Int. J. Plast. 23, 296–322 (2007)CrossRef
go back to reference E. Bayart, I. Svetlizky, J. Fineberg, Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion. Nat. Phys. 12, 166–170 (2016)CrossRef E. Bayart, I. Svetlizky, J. Fineberg, Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion. Nat. Phys. 12, 166–170 (2016)CrossRef
go back to reference V.L. Berdichevsky, On thermodynamics of crystal plasticity. Scr. Mater. 54, 711–716 (2006)CrossRef V.L. Berdichevsky, On thermodynamics of crystal plasticity. Scr. Mater. 54, 711–716 (2006)CrossRef
go back to reference E. Bittencourt, A. Needleman, M.E. Gurtin, E. Van der Giessen, A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J. Mech. Phys. Solids 51, 281–310 (2003)MathSciNetCrossRef E. Bittencourt, A. Needleman, M.E. Gurtin, E. Van der Giessen, A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J. Mech. Phys. Solids 51, 281–310 (2003)MathSciNetCrossRef
go back to reference R.J. Clifton, J. Duffy, K.A. Hartley, T.G. Shawki, On critical conditions for shear band formation at high strain rates. Scr. Etall. 18, 443–448 (1984)CrossRef R.J. Clifton, J. Duffy, K.A. Hartley, T.G. Shawki, On critical conditions for shear band formation at high strain rates. Scr. Etall. 18, 443–448 (1984)CrossRef
go back to reference P. Fredriksson, P. Gudmundson, Competition between interface and bulk dominated plastic deformation in strain gradient plasticity. Model. Simul. Mat. Sci. Eng. 15, S61–S69 (2007)CrossRef P. Fredriksson, P. Gudmundson, Competition between interface and bulk dominated plastic deformation in strain gradient plasticity. Model. Simul. Mat. Sci. Eng. 15, S61–S69 (2007)CrossRef
go back to reference M.E. Gurtin, On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradient. Int. J. Plast. 19, 47–90 (2003)CrossRef M.E. Gurtin, On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradient. Int. J. Plast. 19, 47–90 (2003)CrossRef
go back to reference M.E. Gurtin, A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. J. Mech. Phys. Solids 56, 640–662 (2008)MathSciNetCrossRef M.E. Gurtin, A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. J. Mech. Phys. Solids 56, 640–662 (2008)MathSciNetCrossRef
go back to reference S. Hernandez, J. Hardell, H. Winkelmann, M.R. Ripoll, B. Prakash, Influence of temperature on abrasive wear of boron steel and hot forming tool steels. Wear 338–339, 27–35 (2015)CrossRef S. Hernandez, J. Hardell, H. Winkelmann, M.R. Ripoll, B. Prakash, Influence of temperature on abrasive wear of boron steel and hot forming tool steels. Wear 338–339, 27–35 (2015)CrossRef
go back to reference P. Ireman, Q.S. Nguyen, Using the gradients of temperature and internal parameters in continuum thermodynamics. C. R. Mecanique 332, 249–255 (2004)CrossRef P. Ireman, Q.S. Nguyen, Using the gradients of temperature and internal parameters in continuum thermodynamics. C. R. Mecanique 332, 249–255 (2004)CrossRef
go back to reference P. Ireman, A. Klarbring, N. Stromberg, A model of damage coupled to wear. Int. J. Solids Struct. 40, 2957–2974 (2003)MathSciNetCrossRef P. Ireman, A. Klarbring, N. Stromberg, A model of damage coupled to wear. Int. J. Solids Struct. 40, 2957–2974 (2003)MathSciNetCrossRef
go back to reference L. Johansson, A. Klarbring, Thermoelastic frictional contact problems: modelling, FE-approximation and numerical realization. Comput. Methods Appl. Mech. Eng. 105, 181–210 (1993)CrossRef L. Johansson, A. Klarbring, Thermoelastic frictional contact problems: modelling, FE-approximation and numerical realization. Comput. Methods Appl. Mech. Eng. 105, 181–210 (1993)CrossRef
go back to reference L. Johansson, A. Klarbring, Study of frictional impact using a nonsmooth equations solver. J. Appl. Mech. Trans. ASME 67, 267–273 (2000)CrossRef L. Johansson, A. Klarbring, Study of frictional impact using a nonsmooth equations solver. J. Appl. Mech. Trans. ASME 67, 267–273 (2000)CrossRef
go back to reference R.L. Johnson, M.A. Swikert, E.E. Bisson, Friction at high sliding velocities; naca-tn-1442 (1947) R.L. Johnson, M.A. Swikert, E.E. Bisson, Friction at high sliding velocities; naca-tn-1442 (1947)
go back to reference A. Klarbring, A mathematical-programming approach to 3-dimensional contact problems with friction. Comput. Methods Appl. Mech. Eng. 58, 175–200 (1986)MathSciNetCrossRef A. Klarbring, A mathematical-programming approach to 3-dimensional contact problems with friction. Comput. Methods Appl. Mech. Eng. 58, 175–200 (1986)MathSciNetCrossRef
go back to reference A. Klarbring, Examples of nonuniqueness and nonexistence of solutions to quasi-static contact problems with friction. Ingenieur Arch. 60, 529–541 (1990) A. Klarbring, Examples of nonuniqueness and nonexistence of solutions to quasi-static contact problems with friction. Ingenieur Arch. 60, 529–541 (1990)
go back to reference A. Lodygowski, G.Z. Voyiadjis, B. Deliktas, A. Palazotto, Non-local and numerical formulations for dry sliding friction and wear at high velocities. Int. J. Plast. 27, 1004–1024 (2011)CrossRef A. Lodygowski, G.Z. Voyiadjis, B. Deliktas, A. Palazotto, Non-local and numerical formulations for dry sliding friction and wear at high velocities. Int. J. Plast. 27, 1004–1024 (2011)CrossRef
go back to reference A. Molinari, G. Ravichandran, Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length. Mech. Mater. 37, 737–752 (2005)CrossRef A. Molinari, G. Ravichandran, Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length. Mech. Mater. 37, 737–752 (2005)CrossRef
go back to reference H. Mughrabi, On the current understanding of strain gradient plasticity. Mat. Sci. Eng. A Struct. Mat. Prop. Microstruct. Process. 387–89, 209–213 (2004)CrossRef H. Mughrabi, On the current understanding of strain gradient plasticity. Mat. Sci. Eng. A Struct. Mat. Prop. Microstruct. Process. 387–89, 209–213 (2004)CrossRef
go back to reference O. Nijs, B. Holmedal, J. Friis, E. Nes, Sub-structure strengthening and work hardening of an ultra-fine grained aluminum-magnesium alloy. Mat. Sci. Eng. A Struct. Mat. Prop. Microstruct. Process. 483, 51–53 (2008)CrossRef O. Nijs, B. Holmedal, J. Friis, E. Nes, Sub-structure strengthening and work hardening of an ultra-fine grained aluminum-magnesium alloy. Mat. Sci. Eng. A Struct. Mat. Prop. Microstruct. Process. 483, 51–53 (2008)CrossRef
go back to reference J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)CrossRef J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)CrossRef
go back to reference M. Varga, M. Rojacz, H. Winkelman, H. Mayer, E. Badisch, Wear reducing effects and temperature dependence of tribolayers formation in harsh environment. Tribol. Int. 65, 190–199 (2013)CrossRef M. Varga, M. Rojacz, H. Winkelman, H. Mayer, E. Badisch, Wear reducing effects and temperature dependence of tribolayers formation in harsh environment. Tribol. Int. 65, 190–199 (2013)CrossRef
go back to reference G.Z. Voyiadjis, R.K. Abu Al-Rub, Nonlocal gradient-dependent thermodynamics for modeling scale-dependent plasticity. Int. J. Multiscale Comput. Eng. 5, 295–323 (2007)CrossRef G.Z. Voyiadjis, R.K. Abu Al-Rub, Nonlocal gradient-dependent thermodynamics for modeling scale-dependent plasticity. Int. J. Multiscale Comput. Eng. 5, 295–323 (2007)CrossRef
go back to reference G.Z. Voyiadjis, B. Deliktas, Formulation of strain gradient plasticity with interface energy in a consistent thermodynamic framework. Int. J. Plast. 25(10), 1997–2024 (2009a)CrossRef G.Z. Voyiadjis, B. Deliktas, Formulation of strain gradient plasticity with interface energy in a consistent thermodynamic framework. Int. J. Plast. 25(10), 1997–2024 (2009a)CrossRef
go back to reference G.Z. Voyiadjis, B. Deliktas, Mechanics of strain gradient plasticity with particular reference to decomposition of the state variables into energetic and dissipative components. Int. J. Eng. Sci. 47(11–12), 1405–1423 (2009b)MathSciNetCrossRef G.Z. Voyiadjis, B. Deliktas, Mechanics of strain gradient plasticity with particular reference to decomposition of the state variables into energetic and dissipative components. Int. J. Eng. Sci. 47(11–12), 1405–1423 (2009b)MathSciNetCrossRef
go back to reference G.Z. Voyiadjis, B. Deliktas, D. Faghihi, A. Lodygowski, Friction coefficient evaluation using physically based viscoplasticity model at the contact region during high velocity sliding. Acta Mech. 213, 39–52 (2010)CrossRef G.Z. Voyiadjis, B. Deliktas, D. Faghihi, A. Lodygowski, Friction coefficient evaluation using physically based viscoplasticity model at the contact region during high velocity sliding. Acta Mech. 213, 39–52 (2010)CrossRef
Metadata
Title
Modeling High-Speed Impact Failure of Metallic Materials: Nonlocal Approaches
Authors
George Z. Voyiadjis
Babür Deliktaş
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_5

Premium Partners