Skip to main content
Top

2013 | OriginalPaper | Chapter

Modeling Horizontal Localization of Complex Sounds in the Impaired and Aided Impaired Auditory System

Authors : N. Le Goff, J. M. Buchholz, T. Dau

Published in: The Technology of Binaural Listening

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Background noise, room reflections, or interfering sound sources represent a challenge for daily one-to-one communication, particularly for hearing-impaired listeners, even when wearing hearing aid devices. Through a modeling approach, this project investigated how peripheral hearing loss impairs the processing of spatial cues in adverse listening conditions. A binaural model in which the peripheral processor can be tuned to account for individual hearing loss was developed to predict localization in anechoic and reverberant rooms. Hearing impairment was accounted for by a loss of sensitivity, a loss of cochlear compression and reduced frequency selectivity. A spatial cue-selection mechanism processed the output of the binaural equalization-&-cancellation processor to evaluate the localization information’s reliability based on interaural coherence. The simulations in anechoic environment suggested that the sound-source-location estimates become less reliable and blurred in the case of reduced audibility. Simulations in rooms suggested that the broadening of the auditory filters reduces the fidelity of spectral cues and affects the internal representation of interaural level differences. The model-based analysis of hearing-aid processing showed that amplification and compression used to recover audibility also partially recovered the internal representation of the spatial cues in the impaired auditory system. Future work is needed to extend and experimentally validate the model. Overall, the current model represents a first step towards the development of a dedicated research tool for investigating and understanding the processing of spatial cues in adverse listening conditions, with a long-term goal of contributing to solving the cocktail-party problem for normal hearing and hearing-impaired listeners

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The term interaural coherence denotes the amplitude of the normalized interaural cross-correlation function for maximum ITDs of \(\pm \)1 ms.
 
Literature
1.
go back to reference A. W. Bronkhorst, The Cocktail party phenomenon: A review of research on speech intelligebility in multiple talker conditions, Acta Acustica united with Acustica, 86:117–128, 2000. A. W. Bronkhorst, The Cocktail party phenomenon: A review of research on speech intelligebility in multiple talker conditions, Acta Acustica united with Acustica, 86:117–128, 2000.
2.
go back to reference H. S. Colburn, Computational models of binaural processing In: Auditory Computation, H. Hawkins and T. McMullen, Eds., Springer, Berlin, 1996, 332–400. H. S. Colburn, Computational models of binaural processing In: Auditory Computation, H. Hawkins and T. McMullen, Eds., Springer, Berlin, 1996, 332–400.
3.
go back to reference J. Blauert, Spatial Hearing: the psychophysics of human sound localization, The MIT Press, 1997. J. Blauert, Spatial Hearing: the psychophysics of human sound localization, The MIT Press, 1997.
4.
go back to reference M. Dietz, S. D. Ewert and V. Hohmann, Auditory model based direction estimation of concurrent speakers from binaural signals, Speech Comm., 53:592–605, 2011. M. Dietz, S. D. Ewert and V. Hohmann, Auditory model based direction estimation of concurrent speakers from binaural signals, Speech Comm., 53:592–605, 2011.
5.
go back to reference M. D. Good and R. H. Gilkey, Sound localization in noise: The effect of signal-to-noise ratio, Am. J. Oto., 99:1108–1117, 1996. M. D. Good and R. H. Gilkey, Sound localization in noise: The effect of signal-to-noise ratio, Am. J. Oto., 99:1108–1117, 1996.
6.
go back to reference K. S. Abouchacra, D. C. Emanuel, I. M. Blood and T. R. Letowski, Spatial perception of speech in various signal to noise ratios, Ear Hear., 19:298–309, 1998. K. S. Abouchacra, D. C. Emanuel, I. M. Blood and T. R. Letowski, Spatial perception of speech in various signal to noise ratios, Ear Hear., 19:298–309, 1998.
7.
go back to reference C. Lorenzi, S. Gatehouse and C. Lever, Sound localization in noise in normal-hearing listeners, J. Acoust. Soc. Am., 105:1810–1820, 1999. C. Lorenzi, S. Gatehouse and C. Lever, Sound localization in noise in normal-hearing listeners, J. Acoust. Soc. Am., 105:1810–1820, 1999.
8.
go back to reference M. L. Hawley, R. Y. Litovsky and H. S. Colburn, Speech intelligibility and localization in a multi-source environment, J. Acoust. Soc. Am., 105:3436–3448, 1999. M. L. Hawley, R. Y. Litovsky and H. S. Colburn, Speech intelligibility and localization in a multi-source environment, J. Acoust. Soc. Am., 105:3436–3448, 1999.
9.
go back to reference R. Drullman and A. W. Bronkhorst, Multichannel speech intelligibility and speaker recognition using monaural, binaural and 3D auditory presentation, J. Acoust. Soc. Am., 107:2224–2235, 2000. R. Drullman and A. W. Bronkhorst, Multichannel speech intelligibility and speaker recognition using monaural, binaural and 3D auditory presentation, J. Acoust. Soc. Am., 107:2224–2235, 2000.
10.
go back to reference E. H. A. Langendijk, D. J. Kistler and F. L. Wightman, Sound localization in the presence of one or two distractors, J. Acoust. Soc. Am., 109:2123–2134, 2001. E. H. A. Langendijk, D. J. Kistler and F. L. Wightman, Sound localization in the presence of one or two distractors, J. Acoust. Soc. Am., 109:2123–2134, 2001.
11.
go back to reference N. Kopco, V. Best and S. Carlile, Speech localization in a multitalker mixture, J. Acoust. Soc. Am., vol. 127:1450–1457, 2010. N. Kopco, V. Best and S. Carlile, Speech localization in a multitalker mixture, J. Acoust. Soc. Am., vol. 127:1450–1457, 2010.
12.
go back to reference N. Kopco and B. Shinn-Cunningham, Auditory Localization in Rooms: Acoustic analysis and behavior, in 32nd Intern. Acoust. Conf. - EAA symp., Slovakia., 2002. N. Kopco and B. Shinn-Cunningham, Auditory Localization in Rooms: Acoustic analysis and behavior, in 32nd Intern. Acoust. Conf. - EAA symp., Slovakia., 2002.
13.
go back to reference M. Rychtáriková, T. van den Bogaert, G. Vermeir and J. Wouters, Binaural sound source localization in real and virtual rooms, J. Aud. Eng. Soc. 57:205–220, 2009. M. Rychtáriková, T. van den Bogaert, G. Vermeir and J. Wouters, Binaural sound source localization in real and virtual rooms, J. Aud. Eng. Soc. 57:205–220, 2009.
14.
go back to reference M. Rychtáriková, T. van den Bogaert, G. Vermeir and J. Wouters, Perceptual validation of virtual room acoustics: Sound localisation and speech understanding, Appl. Acoust., 72:196–204, 2011. M. Rychtáriková, T. van den Bogaert, G. Vermeir and J. Wouters, Perceptual validation of virtual room acoustics: Sound localisation and speech understanding, Appl. Acoust., 72:196–204, 2011.
15.
go back to reference J. M. Buchholz, V. Best and G. Keidser, Auditory localization in reverberant multi-source environments by normal-hearing and hearing-impaired listeners, in IHCON Conf., Lake Tahoe, USA, 2012. J. M. Buchholz, V. Best and G. Keidser, Auditory localization in reverberant multi-source environments by normal-hearing and hearing-impaired listeners, in IHCON Conf., Lake Tahoe, USA, 2012.
16.
go back to reference J. Raatgever, On the binaural processing of stimuli with different interaural phase relations, PhD Thesis, Techn. Univ. Delft, The Netherlands, 1980. J. Raatgever, On the binaural processing of stimuli with different interaural phase relations, PhD Thesis, Techn. Univ. Delft, The Netherlands, 1980.
17.
go back to reference R. M. Stern, A. S. Zeiberg and C. Trahiotis, Lateralization of complex binaural stimuli: A weighted-image model, J. Acoust. Soc. Am., 84:156–165, 1988. R. M. Stern, A. S. Zeiberg and C. Trahiotis, Lateralization of complex binaural stimuli: A weighted-image model, J. Acoust. Soc. Am., 84:156–165, 1988.
18.
go back to reference N. Le Goff, J. M. Buchholz and T. Dau, Spectral integration of interaural time differences in auditory localization, in Proc. 21st Intern. Congr. Acoust., ICA 2013, 2013. N. Le Goff, J. M. Buchholz and T. Dau, Spectral integration of interaural time differences in auditory localization, in Proc. 21st Intern. Congr. Acoust., ICA 2013, 2013.
19.
go back to reference N. Le Goff, “Processing interaural differences in lateralization and binaural signal detection”, PhD thesis, Techn. Univ. Eindhoven, The Netherland, 2010. N. Le Goff, “Processing interaural differences in lateralization and binaural signal detection”, PhD thesis, Techn. Univ. Eindhoven, The Netherland, 2010.
20.
go back to reference J. Nix and V. Hohmann, Sound source localization in real sound fields based on empirical statistics of interaural parameters, J. Acoust. Soc. Am., 119:463–479, 2006. J. Nix and V. Hohmann, Sound source localization in real sound fields based on empirical statistics of interaural parameters, J. Acoust. Soc. Am., 119:463–479, 2006.
21.
go back to reference R. Y. Litovsky, H. S. Colburn, W. A. Yost and S. J. Guzman, The precedence effect, J. Acoust. Soc. Am., 106:1633–1654, 1999. R. Y. Litovsky, H. S. Colburn, W. A. Yost and S. J. Guzman, The precedence effect, J. Acoust. Soc. Am., 106:1633–1654, 1999.
22.
go back to reference W. Lindemann, Extension of a binaural cross-correlation model by means of contralateral inhibition. I. Simulation of lateralization of stationary signals., J. Acoust. Soc. Am., 80:1608–1622, 1986. W. Lindemann, Extension of a binaural cross-correlation model by means of contralateral inhibition. I. Simulation of lateralization of stationary signals., J. Acoust. Soc. Am., 80:1608–1622, 1986.
23.
go back to reference C. Faller and J. Merimaa, Source localization in complex listening situations: Selection of binaural cues based on interaural coherence, J. Acoust. Soc. Am., 116: 3075–3089, 2004. C. Faller and J. Merimaa, Source localization in complex listening situations: Selection of binaural cues based on interaural coherence, J. Acoust. Soc. Am., 116: 3075–3089, 2004.
24.
go back to reference N. I. Durlach, C. L. Thompson and H. S. Colburn, Binaural interaction of impaired listeners. A review of past research, Audiology, 20:181–211, 1981. N. I. Durlach, C. L. Thompson and H. S. Colburn, Binaural interaction of impaired listeners. A review of past research, Audiology, 20:181–211, 1981.
25.
go back to reference B. C. J. Moore, Cochlear Hearing Loss, Wiley, 2007. B. C. J. Moore, Cochlear Hearing Loss, Wiley, 2007.
26.
go back to reference D. Byrne and W. Noble, Optimizing sound localization with hearing aids, Trends Amplif., 3:51–73, 1998. D. Byrne and W. Noble, Optimizing sound localization with hearing aids, Trends Amplif., 3:51–73, 1998.
27.
go back to reference H. Dillon, Hearing Aids, Boomrang Press, 2012. H. Dillon, Hearing Aids, Boomrang Press, 2012.
28.
go back to reference D. B. Hawkins and F. L. Wightman, Interaural time discrimination ability of listeners with sensorineural hearing loss, Audiology, 19:495–507, 1980. D. B. Hawkins and F. L. Wightman, Interaural time discrimination ability of listeners with sensorineural hearing loss, Audiology, 19:495–507, 1980.
29.
go back to reference L. Smith-Olinde, J. Koehnke and J. Besing, Effects of sensorineural hearing loss on interaural discrimination and virtual localization, J. Acoust. Soc. Am., 103:2084–2099, 1998. L. Smith-Olinde, J. Koehnke and J. Besing, Effects of sensorineural hearing loss on interaural discrimination and virtual localization, J. Acoust. Soc. Am., 103:2084–2099, 1998.
30.
go back to reference H. S. Colburn, Binaural interaction and localization with various hearing impairments, Scand. Audiol. Suppl., 15:27–45, 1982. H. S. Colburn, Binaural interaction and localization with various hearing impairments, Scand. Audiol. Suppl., 15:27–45, 1982.
31.
go back to reference K. J. Gabriel, J. Koehnke and H. S. Colburn, Frequency dependence of binaural performance in listeners with impaired binaural hearing, J. Acoust. Soc. Am., 91: 336–347, 1992. K. J. Gabriel, J. Koehnke and H. S. Colburn, Frequency dependence of binaural performance in listeners with impaired binaural hearing, J. Acoust. Soc. Am., 91: 336–347, 1992.
32.
go back to reference R. Haeusler, H. S. Colburn and E. Marr, Sound localization in subjects with impaired hearing. Spatial-discrimination and interaural-discrimination tests, Acta Otolaryngol. Suppl., 400:1–62, 1983. R. Haeusler, H. S. Colburn and E. Marr, Sound localization in subjects with impaired hearing. Spatial-discrimination and interaural-discrimination tests, Acta Otolaryngol. Suppl., 400:1–62, 1983.
33.
go back to reference U. Rosenhall, The influence of hearing loss on directional hearing, Scand. Audiol., 14:187–189, 1985. U. Rosenhall, The influence of hearing loss on directional hearing, Scand. Audiol., 14:187–189, 1985.
34.
go back to reference W. Noble, D. Byrne and B. Lepage, Effects on sound localization of configuration and type of hearing impairment, J. Acoust. Soc. Am., 95:992–1005, 1994. W. Noble, D. Byrne and B. Lepage, Effects on sound localization of configuration and type of hearing impairment, J. Acoust. Soc. Am., 95:992–1005, 1994.
35.
go back to reference W. Noble, D. Byrne and K. T. Horst, Auditory localization, detection of spatial separateness, and speech hearing in noise by hearing impaired listeners, J. Acoust. Soc. Am., 102:2343–2352, 1995. W. Noble, D. Byrne and K. T. Horst, Auditory localization, detection of spatial separateness, and speech hearing in noise by hearing impaired listeners, J. Acoust. Soc. Am., 102:2343–2352, 1995.
36.
go back to reference C. Lorenzi, S. Gatehouse and C. Lever, Sound localization in noise in hearing-impaired listeners, J. Acoust. Soc. Am., 105:3454–3463, 1999. C. Lorenzi, S. Gatehouse and C. Lever, Sound localization in noise in hearing-impaired listeners, J. Acoust. Soc. Am., 105:3454–3463, 1999.
37.
go back to reference M. A. Akeroyd and F. H. Guy, The effect of hearing impairment on localization dominance for single-word stimuli, J. Acoust. Soc. Am., 130:312–323, 2011. M. A. Akeroyd and F. H. Guy, The effect of hearing impairment on localization dominance for single-word stimuli, J. Acoust. Soc. Am., 130:312–323, 2011.
38.
go back to reference B. U. Seeber and E. R. Hafter, Failure of the precedence effect with a noise-band vocoder, J. Acoust. Soc. Am., 129:1509–1521, 2011. B. U. Seeber and E. R. Hafter, Failure of the precedence effect with a noise-band vocoder, J. Acoust. Soc. Am., 129:1509–1521, 2011.
39.
go back to reference R. R. Leech, B. Gygi, J. Aydelott and F. Dick, Informational factors in identifying environmental sounds in natural auditory scenes, J. Acoust. Soc. Am., 126:3147–3155, 2009. R. R. Leech, B. Gygi, J. Aydelott and F. Dick, Informational factors in identifying environmental sounds in natural auditory scenes, J. Acoust. Soc. Am., 126:3147–3155, 2009.
40.
go back to reference W. Noble, K. Ter-Horst and D. Byrne, Disabilities and handicaps associated with impaired auditory localization, J. Am. Acad. Audiol., 6:129–140, 1995. W. Noble, K. Ter-Horst and D. Byrne, Disabilities and handicaps associated with impaired auditory localization, J. Am. Acad. Audiol., 6:129–140, 1995.
41.
go back to reference W. Noble and S. Gatehouse, Effects of bilateral versus unilateral hearing aid fitting on abilities measured by the speech, spatial, and qualities of hearing scale (SSQ), Int. J. Audiol., 45:172–181, 2006. W. Noble and S. Gatehouse, Effects of bilateral versus unilateral hearing aid fitting on abilities measured by the speech, spatial, and qualities of hearing scale (SSQ), Int. J. Audiol., 45:172–181, 2006.
42.
go back to reference M. Boymans, S. T. Govers, S. E. Kramer, J. M. Festen and W. A. Dreschler, Candidacy for bilateral hearing aids: a retrospective multicenter study, J. Speech Language Hear. Res., 52:130–140, 2009. M. Boymans, S. T. Govers, S. E. Kramer, J. M. Festen and W. A. Dreschler, Candidacy for bilateral hearing aids: a retrospective multicenter study, J. Speech Language Hear. Res., 52:130–140, 2009.
43.
go back to reference T. Van den Bogaert, T. J. Klasen, M. Moonen, L. V. Deun and J. Wouters, Horizontal localization with bilateral hearing aids: Without is better than with, J. Acoust. Soc. Am., 119:515–526, 2006. T. Van den Bogaert, T. J. Klasen, M. Moonen, L. V. Deun and J. Wouters, Horizontal localization with bilateral hearing aids: Without is better than with, J. Acoust. Soc. Am., 119:515–526, 2006.
44.
go back to reference G. Keidser, K. Rohrseits, H. Dillon, V. Hamacher, L. Carter, U. Rass and E. Convery, The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers, Inter. J. Audiol., 45:563–579, 2006. G. Keidser, K. Rohrseits, H. Dillon, V. Hamacher, L. Carter, U. Rass and E. Convery, The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers, Inter. J. Audiol., 45:563–579, 2006.
45.
go back to reference T. Van den Bogaert, E. Carette and J. Wouters, Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna, Inter. J. Audiol., 50:164–176, 2011. T. Van den Bogaert, E. Carette and J. Wouters, Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna, Inter. J. Audiol., 50:164–176, 2011.
46.
go back to reference V. Best, S. Kalluri, S. McLachlan, S. Valentine, B. Edwards and S. Carlile, A comparison of CIC and BTE hearing aids for three-dimensional localization of speech, Int. J. Audiol., 49:723–732, 2010. V. Best, S. Kalluri, S. McLachlan, S. Valentine, B. Edwards and S. Carlile, A comparison of CIC and BTE hearing aids for three-dimensional localization of speech, Int. J. Audiol., 49:723–732, 2010.
47.
go back to reference W. Noble, S. Sinclair and D. Byrn, Improvement in aided sound localization with open earmolds: observations in people with high-frequency hearing loss, J. Am. Acad. Audiol., 9: 25–34, 1998. W. Noble, S. Sinclair and D. Byrn, Improvement in aided sound localization with open earmolds: observations in people with high-frequency hearing loss, J. Am. Acad. Audiol., 9: 25–34, 1998.
48.
go back to reference T. Van den Bogaert, S. Doclo, J. Wouters and M. Moonen, The effect of multi-microphone noise reduction systems on sound source localization by users of binaural hearing aids, J. Acoust. Soc. Am., 124:484–497, 2008. T. Van den Bogaert, S. Doclo, J. Wouters and M. Moonen, The effect of multi-microphone noise reduction systems on sound source localization by users of binaural hearing aids, J. Acoust. Soc. Am., 124:484–497, 2008.
49.
go back to reference T. J. Klasen, T. V. d. B., M. Moonen and J. Wouters, Binaural noise reduction algorithms for hearing aids that preserve interaural time delay cues, IEEE Trans. Signal Process, 55:1579–1585, 2007. T. J. Klasen, T. V. d. B., M. Moonen and J. Wouters, Binaural noise reduction algorithms for hearing aids that preserve interaural time delay cues, IEEE Trans. Signal Process, 55:1579–1585, 2007.
50.
go back to reference J. Mejia, G. Keidser, H. Dillon, CV. Nguyen, and E. Johnson, The effect of a linked bilateral noise reduction processing on speech in noise performance. In Speech Perception and Auditory Disorders, ed. by T. Dau, J.C. Dalsgaard, M.L. Jepsen, and T. Poulsen, 2011 J. Mejia, G. Keidser, H. Dillon, CV. Nguyen, and E. Johnson, The effect of a linked bilateral noise reduction processing on speech in noise performance. In Speech Perception and Auditory Disorders, ed. by T. Dau, J.C. Dalsgaard, M.L. Jepsen, and T. Poulsen, 2011
51.
go back to reference E. A. Lopez-Poveda and R. Meddis, A human nonlinear cochlear filterbank, J. Acoust. Soc. Am., 110:3107–3118, 2001. E. A. Lopez-Poveda and R. Meddis, A human nonlinear cochlear filterbank, J. Acoust. Soc. Am., 110:3107–3118, 2001.
52.
go back to reference J. Breebaart, S. van de Par and A. Kohlrausch, Binaural processing model based on contralateral inhibition. I. Model structure, J. Acoust. Soc. Am., 110:1074–1088, 2001. J. Breebaart, S. van de Par and A. Kohlrausch, Binaural processing model based on contralateral inhibition. I. Model structure, J. Acoust. Soc. Am., 110:1074–1088, 2001.
53.
go back to reference R. L. Goode, M. L. Killion, K. Nakamura and S. Nishihara, New knowledge about the function of the human middle ear: Development of an improved analogue model, Am. J. Otol., 15:145–154, 1994. R. L. Goode, M. L. Killion, K. Nakamura and S. Nishihara, New knowledge about the function of the human middle ear: Development of an improved analogue model, Am. J. Otol., 15:145–154, 1994.
54.
go back to reference M. L. Jepsen, S. D. Ewert and T. Dau, A computational model of human auditory signal processing and perception, J. Acoust. Soc. Am., 124:422–438, 2008. M. L. Jepsen, S. D. Ewert and T. Dau, A computational model of human auditory signal processing and perception, J. Acoust. Soc. Am., 124:422–438, 2008.
55.
go back to reference T. Dau, D. Püschel and A. Kohlrausch, A quantitative model of the “effective” signal processing in the auditory system. II. Simulations and measurements, J. Acoust. Soc. Am., 99:3623–3631, 1996. T. Dau, D. Püschel and A. Kohlrausch, A quantitative model of the “effective” signal processing in the auditory system. II. Simulations and measurements, J. Acoust. Soc. Am., 99:3623–3631, 1996.
56.
go back to reference T. Dau, B. Kollmeier and A. Kohlrausch, Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow banc carriers, J. Acoust. Soc. Am., 102:2892–2905, 1997. T. Dau, B. Kollmeier and A. Kohlrausch, Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow banc carriers, J. Acoust. Soc. Am., 102:2892–2905, 1997.
57.
go back to reference M. L. Jepsen and T. Dau, Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss, J. Acoust. Soc. Am., 129:262–281, 2011. M. L. Jepsen and T. Dau, Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss, J. Acoust. Soc. Am., 129:262–281, 2011.
58.
go back to reference ISO 226:2003 Normal equal-loudness-level contours. International Organization for Standardization, ISO, Geneva. ISO 226:2003 Normal equal-loudness-level contours. International Organization for Standardization, ISO, Geneva.
59.
go back to reference A. Kohlrausch, J. Braasch, D. Kolossa and J. Blauert. An introduction to binaural processing. In J. Blauert, editor, The technology of binaural listening, chapter 1. Springer, Berlin-Heidelberg-New York NY, 2013. A. Kohlrausch, J. Braasch, D. Kolossa and J. Blauert. An introduction to binaural processing. In J. Blauert, editor, The technology of binaural listening, chapter 1. Springer, Berlin-Heidelberg-New York NY, 2013.
60.
go back to reference N. Durlach, Equalization and cancellation theory of binaural masking level-level differences, J. Acoust. Soc. Am., 35:1205–1218, 1963. N. Durlach, Equalization and cancellation theory of binaural masking level-level differences, J. Acoust. Soc. Am., 35:1205–1218, 1963.
61.
go back to reference D. W. Grantham and F. L. Wightman, Detectability of varying interaural temporal differences, J. Acoust. Soc. Am., 63: 511–523, 1978. D. W. Grantham and F. L. Wightman, Detectability of varying interaural temporal differences, J. Acoust. Soc. Am., 63: 511–523, 1978.
62.
go back to reference R. Klumpp and H. Eady, Some Measurements of Interaural Time Difference Thresholds, J. Acoust. Soc. Am., 28:859–860, 1956. R. Klumpp and H. Eady, Some Measurements of Interaural Time Difference Thresholds, J. Acoust. Soc. Am., 28:859–860, 1956.
63.
go back to reference IEEE recommended practice for speech quality measurements, 1969. IEEE recommended practice for speech quality measurements, 1969.
64.
go back to reference B.C. Moore, An introduction to the psychology of hearing, \(4^{\rm th}\) Ed. Academic Press, London, 1997. B.C. Moore, An introduction to the psychology of hearing, \(4^{\rm th}\) Ed. Academic Press, London, 1997.
65.
go back to reference W. E. Feddersen, T. T. Sandel, D. C. Teas and L. A. Jeffress, Localization of High-Frequency Tones, J. Acoust. Soc. Am., 29:988–991, 1957. W. E. Feddersen, T. T. Sandel, D. C. Teas and L. A. Jeffress, Localization of High-Frequency Tones, J. Acoust. Soc. Am., 29:988–991, 1957.
66.
go back to reference A. Schlesinger and C. Luther, Optimization of binaural algorithms for maximum predicted speech intelligibility. In J. Blauert, editor, The technology of binaural listening, chapter 11. Springer, Berlin-Heidelberg-New York NY, 2013. A. Schlesinger and C. Luther, Optimization of binaural algorithms for maximum predicted speech intelligibility. In J. Blauert, editor, The technology of binaural listening, chapter 11. Springer, Berlin-Heidelberg-New York NY, 2013.
67.
go back to reference C. Orinos and J. Buchholz, Measurement of a complete set of HRTFs for in-ear and hearing aid microphones on a Head and Torso Simulator, J. Acoust. Soc. Am., submitted, 2013. C. Orinos and J. Buchholz, Measurement of a complete set of HRTFs for in-ear and hearing aid microphones on a Head and Torso Simulator, J. Acoust. Soc. Am., submitted, 2013.
68.
go back to reference H. Kutruff, Room acoustics, Elsevier, 1973. H. Kutruff, Room acoustics, Elsevier, 1973.
69.
go back to reference B. R. Glasberg and B. C. J. Moore, Derivation of auditory filter shapes from notched noise data, Hear. Res., 47:103–138, 1990. B. R. Glasberg and B. C. J. Moore, Derivation of auditory filter shapes from notched noise data, Hear. Res., 47:103–138, 1990.
70.
go back to reference T. Baer and B. C. J. Moore, Effects of spectral smearing on the intelligibility of sentences in noise, J. Acoust. Soc. Am., 94:1229–1241, 1993. T. Baer and B. C. J. Moore, Effects of spectral smearing on the intelligibility of sentences in noise, J. Acoust. Soc. Am., 94:1229–1241, 1993.
71.
go back to reference J. M. Buchholz, A real-time hearing-aid research platform (HARP): realization, calibration, and evaluation, Acta Acustica united with Acustica, under revision, 2013. J. M. Buchholz, A real-time hearing-aid research platform (HARP): realization, calibration, and evaluation, Acta Acustica united with Acustica, under revision, 2013.
72.
go back to reference J. Breebaart, S. van de Par and A. Kohlrausch, Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters, J. Acoust. Soc. Am., 110:1089–1104, 2001. J. Breebaart, S. van de Par and A. Kohlrausch, Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters, J. Acoust. Soc. Am., 110:1089–1104, 2001.
73.
go back to reference J. M. Kates, Digital Hearing Aids, Plural Publishing, 2008. J. M. Kates, Digital Hearing Aids, Plural Publishing, 2008.
Metadata
Title
Modeling Horizontal Localization of Complex Sounds in the Impaired and Aided Impaired Auditory System
Authors
N. Le Goff
J. M. Buchholz
T. Dau
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37762-4_5

Premium Partners