Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

18-08-2021 | Regular Paper | Issue 6/2021

Journal of Visualization 6/2021

Modeling layout design for multiple-view visualization via Bayesian inference

Journal:
Journal of Visualization > Issue 6/2021
Authors:
Lingdan Shao, Zhe Chu, Xi Chen, Yanna Lin, Wei Zeng
Important notes
Lingdan Shao and Zhe Chu contributed equally to this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including view (e.g., bar and line charts), viewport (e.g., mobile vs. desktop), and coordination (e.g., exploration vs. comparison), along with expertise and preference of the designer. Recent studies have revealed the diverse space of MV layout design via statistical analysis on empirical MVs, yet neglect the effects of those design factors. To address the gap, this work proposes to model the effects of design factors on MV layouts via Bayesian probabilistic inference. Specifically, we access three important properties of MV layout, i.e., maximum area ratio and weighted average aspect ratio as geometric metrics, and layout topology as a topological metric. We update the posterior probability of layout metrics given design factors by penetrating MVs from recent visualization publications. The analyses reveal many insightful MV layout design patterns, such as views in coordination type of comparison exhibit more balanced area ratio, while those for exploration are more scattered. This work makes a prominent starting point for a thorough understanding of MV layout design patterns. On the basis, we discuss how practitioners can use Bayesian inference approach for future research on finer-annotated visualization datasets and more comprehensive design factors and properties.

Graphic Abstract

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2021

Journal of Visualization 6/2021 Go to the issue

Premium Partner

    Image Credits