Skip to main content
Top

2016 | OriginalPaper | Chapter

5. Modeling Nanoparticle Optics

Authors : Renat R. Letfullin, Thomas F. George

Published in: Computational Nanomedicine and Nanotechnology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As we discussed in the preceding Chap. 4, the optimal range of nanoparticle sizes and optimal wavelength of radiation for effective activating/heating of nanoparticles in tumor cells can be calculated on the basis of the Lorenz–Mie diffraction theory at the single-scattering approximation. The Mie formalism requires the use of two dimensionless input parameters: the complex refractive index of the nanoparticle and the surrounding medium at the given wavelength. In this chapter we introduce a computer software and perform Mie simulations of absorption, scattering, and extinction efficiencies of different types of nanoparticles as a function of particle size and the wavelength of radiation in different surrounding biological media. Also, we calculate and then use the differences in optical properties of normal and cancer cell organelles in order to design new cancer detection and treatment methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference X. Ma et al., Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm. Phys. Med. Biol. 48, 4165–4172 (2003)CrossRef X. Ma et al., Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm. Phys. Med. Biol. 48, 4165–4172 (2003)CrossRef
2.
go back to reference R.R. Letfullin, V.I. Igoshin, Multipass optical reactor for laser processing of disperse materials. Quantum Electron. 25, 684–689 (1995)CrossRef R.R. Letfullin, V.I. Igoshin, Multipass optical reactor for laser processing of disperse materials. Quantum Electron. 25, 684–689 (1995)CrossRef
4.
go back to reference P. Laven, Simulation of rainbows, coronas, and glories by use of Mie theory. Appl. Optics 42(3), 436–444 (2003)CrossRef P. Laven, Simulation of rainbows, coronas, and glories by use of Mie theory. Appl. Optics 42(3), 436–444 (2003)CrossRef
5.
go back to reference R.R. Letfullin, T.F. George, New dynamic modes for selective laser cancer nanotherapy, in Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, ed. by T.F. George, D. Jelski, R.R. Letfullin, G.P. Zhang (World Scientific, Singapore, 2011), pp. 131–172CrossRef R.R. Letfullin, T.F. George, New dynamic modes for selective laser cancer nanotherapy, in Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, ed. by T.F. George, D. Jelski, R.R. Letfullin, G.P. Zhang (World Scientific, Singapore, 2011), pp. 131–172CrossRef
6.
go back to reference P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. 110, 7238–7248 (2006)CrossRef P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. 110, 7238–7248 (2006)CrossRef
7.
go back to reference R.R. Letfullin, T.F. George, Plasmonic nanomaterials in nanomedicine, in Springer Handbook of Nanomaterials, ed. by R. Vajtai (Springer, Berlin, 2013), pp. 1063–1097CrossRef R.R. Letfullin, T.F. George, Plasmonic nanomaterials in nanomedicine, in Springer Handbook of Nanomaterials, ed. by R. Vajtai (Springer, Berlin, 2013), pp. 1063–1097CrossRef
8.
go back to reference T.K. Biswas, A.K. Gupta, Retrieval of true color of the internal organ of CT images and attempt to tissue characterization by refractive index: initial experience. Indian J. Radiol. Imaging 12, 169–178 (2002) T.K. Biswas, A.K. Gupta, Retrieval of true color of the internal organ of CT images and attempt to tissue characterization by refractive index: initial experience. Indian J. Radiol. Imaging 12, 169–178 (2002)
9.
go back to reference R. Drezek, A. Dunn, R. Richards-Kortum, A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges. Appl. Optics 38, 3651–3661 (1999)CrossRef R. Drezek, A. Dunn, R. Richards-Kortum, A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges. Appl. Optics 38, 3651–3661 (1999)CrossRef
10.
go back to reference J.D. Wilson, W.J. Cottrell, T.H. Foster, Index of refraction-dependent subcellular light scattering observed with organelle-specific dyes. J. Biomed. Opt. 12(1), 014010 (2007)CrossRef J.D. Wilson, W.J. Cottrell, T.H. Foster, Index of refraction-dependent subcellular light scattering observed with organelle-specific dyes. J. Biomed. Opt. 12(1), 014010 (2007)CrossRef
11.
go back to reference J. Beuthan, O. Minet, J. Helfmann, M. Herrig, G. Muller, The spatial variation of the refractive index in biological cells. Phys. Med. Biol. 41, 369–382 (1996)CrossRef J. Beuthan, O. Minet, J. Helfmann, M. Herrig, G. Muller, The spatial variation of the refractive index in biological cells. Phys. Med. Biol. 41, 369–382 (1996)CrossRef
12.
go back to reference S. Johnsen, E.A. Widder, The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering. J. Theor. Biol. 199(2), 181–198 (1999)CrossRef S. Johnsen, E.A. Widder, The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering. J. Theor. Biol. 199(2), 181–198 (1999)CrossRef
13.
go back to reference B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, Phase measurement of light absorption and scatter in human tissue. Rev. Sci. Instrum. 69, 3457–3481 (1998)CrossRef B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, Phase measurement of light absorption and scatter in human tissue. Rev. Sci. Instrum. 69, 3457–3481 (1998)CrossRef
14.
go back to reference S. Bassenett, On the mechanism of organelle degradation in the vertebrate lens. Exp. Eye Res. 88, 133–139 (2009)CrossRef S. Bassenett, On the mechanism of organelle degradation in the vertebrate lens. Exp. Eye Res. 88, 133–139 (2009)CrossRef
15.
go back to reference T. Torimura, T. Ueno, S. Inuzuka, Y. Kimura, P. Ko, M. Kin, T. Minetoma, T. Majima, M. Sata, H. Abe, K. Tanikawa, Ultrastructural observation on hepatocellular carcinoma: correlation of tumor grade and degree of atypia of cell organelles by morphometry. Med. Electron Microsc. 26, 19–28 (1993)CrossRef T. Torimura, T. Ueno, S. Inuzuka, Y. Kimura, P. Ko, M. Kin, T. Minetoma, T. Majima, M. Sata, H. Abe, K. Tanikawa, Ultrastructural observation on hepatocellular carcinoma: correlation of tumor grade and degree of atypia of cell organelles by morphometry. Med. Electron Microsc. 26, 19–28 (1993)CrossRef
16.
go back to reference G.T. Deans, P.W. Hamilton, P.C.H. Watt, M. Heatly, K. Williamson, C.C. Patterson, B.J. Rowlands, G. Parks, R. Spence, Morphometric analysis of colorectal cancer. Diseases of the Colon and Rectum 36, 450–456 (1993)CrossRef G.T. Deans, P.W. Hamilton, P.C.H. Watt, M. Heatly, K. Williamson, C.C. Patterson, B.J. Rowlands, G. Parks, R. Spence, Morphometric analysis of colorectal cancer. Diseases of the Colon and Rectum 36, 450–456 (1993)CrossRef
17.
go back to reference M.M. Radwan, K.A. Amer, N.M. Mokhtar, M.A. Kandil, A.M. El-Barbary, H.A. Aiad, Nuclear morphometry in ductal breast carcinoma with correlation to cell proliferative activity and prognosis. J. Egypt. Natl. Canc. Inst. 15, 169–182 (2003) M.M. Radwan, K.A. Amer, N.M. Mokhtar, M.A. Kandil, A.M. El-Barbary, H.A. Aiad, Nuclear morphometry in ductal breast carcinoma with correlation to cell proliferative activity and prognosis. J. Egypt. Natl. Canc. Inst. 15, 169–182 (2003)
18.
go back to reference D. Ozaki, Y. Kondo, Comparative morphometric studies of benign and malignant intraductal proliferative lesions of the breast by computerized image analysis. Hum. Pathol. 26, 1109–1113 (1995)CrossRef D. Ozaki, Y. Kondo, Comparative morphometric studies of benign and malignant intraductal proliferative lesions of the breast by computerized image analysis. Hum. Pathol. 26, 1109–1113 (1995)CrossRef
19.
go back to reference Y. Cui, E.A. Koop, P.J. van Diest, R.A. Kandel, T.E. Rohan, Nuclear morphometric features in benign breast tissue and risk of subsequent breast cancer. Breast Cancer Res. Treat. 104, 103–107 (2007)CrossRef Y. Cui, E.A. Koop, P.J. van Diest, R.A. Kandel, T.E. Rohan, Nuclear morphometric features in benign breast tissue and risk of subsequent breast cancer. Breast Cancer Res. Treat. 104, 103–107 (2007)CrossRef
20.
go back to reference R.R. Letfullin, T.F. George, Laser ablation of biological tissue by short and ultrashort pulses, in Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, ed. by T.F. George, D. Jelski, R.R. Letfullin, G.P. Zhang (World Scientific, Singapore, 2011), pp. 191–218CrossRef R.R. Letfullin, T.F. George, Laser ablation of biological tissue by short and ultrashort pulses, in Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, ed. by T.F. George, D. Jelski, R.R. Letfullin, G.P. Zhang (World Scientific, Singapore, 2011), pp. 191–218CrossRef
21.
go back to reference M.R. Querry, G. Osborne, K. Lies, R. Jordon, R.M. Coveney Jr., Complex refractive index of limestone in the visible and infrared. Appl. Optics 17, 353–356 (1978)CrossRef M.R. Querry, G. Osborne, K. Lies, R. Jordon, R.M. Coveney Jr., Complex refractive index of limestone in the visible and infrared. Appl. Optics 17, 353–356 (1978)CrossRef
22.
go back to reference I.H. Malitson, A redetermination of some optical properties of calcium fluoride. Appl. Optics 2, 1103–1107 (1963)CrossRef I.H. Malitson, A redetermination of some optical properties of calcium fluoride. Appl. Optics 2, 1103–1107 (1963)CrossRef
23.
go back to reference R.R. Letfullin, T.F. George, Nanomaterials in nanomedicine, in Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, ed. by T.F. George, D. Jelski, R.R. Letfullin, G.P. Zhang (World Scientific, Singapore, 2011), pp. 103–129CrossRef R.R. Letfullin, T.F. George, Nanomaterials in nanomedicine, in Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, ed. by T.F. George, D. Jelski, R.R. Letfullin, G.P. Zhang (World Scientific, Singapore, 2011), pp. 103–129CrossRef
24.
go back to reference R.R. Letfullin, C.B. Iversen, T.F. George, Modeling nanophotothermal therapy: Kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles. Nanomed.: Nanotechnol. Biol. Med. 7, 137–145 (2011) R.R. Letfullin, C.B. Iversen, T.F. George, Modeling nanophotothermal therapy: Kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles. Nanomed.: Nanotechnol. Biol. Med. 7, 137–145 (2011)
Metadata
Title
Modeling Nanoparticle Optics
Authors
Renat R. Letfullin
Thomas F. George
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-43577-0_5