Skip to main content
Top
Published in:

01-12-2023 | Original Article

Modeling rabbit-holes on YouTube

Authors: Erwan Le Merrer, Gilles Tredan, Ali Yesilkanat

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article delves into the personalization dynamics of YouTube's recommendation system, focusing on the rabbit-hole effect where users are trapped in narrow content bubbles. It introduces a model to quantify this effect and uses automated data collection methods to validate its findings. The study highlights the rapid personalization of recommendations and the role of specific video categories as attractors. The research provides a framework for continuous and automated auditing of recommendation systems, contributing significantly to the understanding and regulation of algorithmic influence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
https://​github.​com/​puppeteer/​puppeteer—We note that recommendations (be they contextual or personalized) are only available at the time of our collection campaign using a JavaScript-enabled browser: the mere use of a fast yet basic static web scrapper (such as, e.g., scrappy) does not allow recommendation collection, as it was the case several years ago (Le Merrer and Trédan 2017).
 
2
This value is way over the 30 s known to be the limit of YouTube to consider a real video watch and then to increment its view counter, see, e.g., https://​growtraffic.​com/​blog/​2017/​08/​youtube-video-counts-view
 
3
Hence, we leave aside the position of a given video in the recommendation list. Although this definitely constitutes a valuable information, weighting the relative importance of videos being recommended first or last is difficult and left to future work.
 
5
We note that the prevalence of clicks on recommendations over searches is major, around \(70\%\) in 2018 as indicated by YouTube product chief, please refer to https://​www.​cnet.​com/​news/​youtube-ces-2018-neal-mohan/​.
 
6
Which meets the theoretical expectation: the probability of not picking a B video is \((1-|V|/|B|)\), hence the probability of not picking a B video h times is \((1-|V|/|B|)^h\simeq 35\%\) chances given the selected parameters.
 
7
Those observations also hold for the multiple RHs case: a collection of categories \(\{B_i\}_i\), provided those are tight \(\forall i,j, B_i\cap B_j=\emptyset\) and small compared to the overall catalog: \(\forall i,\;\left| V \right| > > \left| {B_{i} } \right|\). In such setting, users in different RHs will also have an empty recommendation intersection.
 
Literature
go back to reference Brodersen A, Scellato S, Wattenhofer M (2012) Youtube around the world: geographic popularity of videos. In: WWW Brodersen A, Scellato S, Wattenhofer M (2012) Youtube around the world: geographic popularity of videos. In: WWW
go back to reference Covington P, Adams J, Sargin E (2016) Deep neural networks for youtube recommendations. In: Recsys Covington P, Adams J, Sargin E (2016) Deep neural networks for youtube recommendations. In: Recsys
go back to reference Davis CA, Varol O, Ferrara E, Flammini A, Menczer F (2016) Botornot: a system to evaluate social bots. In: WWW Davis CA, Varol O, Ferrara E, Flammini A, Menczer F (2016) Botornot: a system to evaluate social bots. In: WWW
go back to reference Hussein E, Juneja P, Mitra T (2020) Measuring misinformation in video search platforms: an audit study on youtube. HCI Hussein E, Juneja P, Mitra T (2020) Measuring misinformation in video search platforms: an audit study on youtube. HCI
go back to reference Kaiser J, Rauchfleisch A (2019) The implications of venturing down the rabbit hole. Internet Policy Rev 8(2):1–22 Kaiser J, Rauchfleisch A (2019) The implications of venturing down the rabbit hole. Internet Policy Rev 8(2):1–22
go back to reference Kotkov D, Wang S, Veijalainen J (2016) A survey of serendipity in recommender systems. Knowl Based Syst 111:180–192CrossRef Kotkov D, Wang S, Veijalainen J (2016) A survey of serendipity in recommender systems. Knowl Based Syst 111:180–192CrossRef
go back to reference Le Merrer E, Trédan G (2017) The topological face of recommendation. In: complex networks and their applications Le Merrer E, Trédan G (2017) The topological face of recommendation. In: complex networks and their applications
go back to reference Ledwich M, Zaitsev A (2019) Algorithmic extremism: Examining youtube’s rabbit hole of radicalization. arXiv preprint arXiv:1912.11211 Ledwich M, Zaitsev A (2019) Algorithmic extremism: Examining youtube’s rabbit hole of radicalization. arXiv preprint arXiv:​1912.​11211
go back to reference Li L, Chu W, Langford J, Schapire RE (2010) A contextual-bandit approach to personalized news article recommendation. In: WWW Li L, Chu W, Langford J, Schapire RE (2010) A contextual-bandit approach to personalized news article recommendation. In: WWW
go back to reference Li Q, Kim BM (2003) Clustering approach for hybrid recommender system. In: WI Li Q, Kim BM (2003) Clustering approach for hybrid recommender system. In: WI
go back to reference Lukoff K, Lyngs U, Zade H, Liao JV, Choi J, Fan K, Munson SA, Hiniker A (2021) How the design of youtube influences user sense of agency. In: conference on human factors in computing systems Lukoff K, Lyngs U, Zade H, Liao JV, Choi J, Fan K, Munson SA, Hiniker A (2021) How the design of youtube influences user sense of agency. In: conference on human factors in computing systems
go back to reference Masadeh S, Hamilton B (2020) The aftermath of the adpocalypse: Systemic bias on youtube. CHI Masadeh S, Hamilton B (2020) The aftermath of the adpocalypse: Systemic bias on youtube. CHI
go back to reference O’Callaghan D, Greene D, Conway M, Carthy J, Cunningham P (2015) Down the (white) rabbit hole: the extreme right and online recommender systems. Soc Sci Comput Rev 33(4):459–478CrossRef O’Callaghan D, Greene D, Conway M, Carthy J, Cunningham P (2015) Down the (white) rabbit hole: the extreme right and online recommender systems. Soc Sci Comput Rev 33(4):459–478CrossRef
go back to reference Papadamou K, Zannettou S, Blackburn J, De Cristofaro E, Stringhini G, Sirivianos M (2021) Understanding the incel community on youtube. CSCW Papadamou K, Zannettou S, Blackburn J, De Cristofaro E, Stringhini G, Sirivianos M (2021) Understanding the incel community on youtube. CSCW
go back to reference Pariser E (2011) The filter bubble: What the internet is hiding from you. In: Penguin UK Pariser E (2011) The filter bubble: What the internet is hiding from you. In: Penguin UK
go back to reference Pasquale F (2015) The black box society. Harvard University Press, CambridgeCrossRef Pasquale F (2015) The black box society. Harvard University Press, CambridgeCrossRef
go back to reference Raji ID, Smart A, White RN, Mitchell M, Gebru T, Hutchinson B, Smith-Loud J, Theron D, Barnes P (2020) Closing the ai accountability gap: defining an end-to-end framework for internal algorithmic auditing. In: FAT* Raji ID, Smart A, White RN, Mitchell M, Gebru T, Hutchinson B, Smith-Loud J, Theron D, Barnes P (2020) Closing the ai accountability gap: defining an end-to-end framework for internal algorithmic auditing. In: FAT*
go back to reference Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850CrossRef Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850CrossRef
go back to reference Ribeiro MH, Ottoni R, West R, Almeida VAF, Meira W (2019) Auditing radicalization pathways on youtube. In: FAT* x Ribeiro MH, Ottoni R, West R, Almeida VAF, Meira W (2019) Auditing radicalization pathways on youtube. In: FAT* x
go back to reference Roth C, Mazières A, Menezes T (2020) Tubes and bubbles topological confinement of youtube recommendations. PloS one 15(4):0231703CrossRef Roth C, Mazières A, Menezes T (2020) Tubes and bubbles topological confinement of youtube recommendations. PloS one 15(4):0231703CrossRef
go back to reference Sashittal HC, Jassawalla AR (2021) Brands as personal narratives: learning from user-youtube-brand interactions. J Brand Manag 28(6):657–670CrossRef Sashittal HC, Jassawalla AR (2021) Brands as personal narratives: learning from user-youtube-brand interactions. J Brand Manag 28(6):657–670CrossRef
go back to reference Stöcker C, Preuss M (2020) Riding the wave of misclassification: How we end up with extreme youtube content. In: HCI Stöcker C, Preuss M (2020) Riding the wave of misclassification: How we end up with extreme youtube content. In: HCI
go back to reference Stray J, Vendrov I, Nixon J, Adler S, Hadfield-Menell D (2021) What are you optimizing for? Aligning recommender systems with human values. arXiv preprint arXiv:2107.10939 Stray J, Vendrov I, Nixon J, Adler S, Hadfield-Menell D (2021) What are you optimizing for? Aligning recommender systems with human values. arXiv preprint arXiv:​2107.​10939
go back to reference Sukul A, Gopalakrishnan B, Tavanapong W, Peterson DAM (2017) Online video ad measurement for political science research. In: Big Data Sukul A, Gopalakrishnan B, Tavanapong W, Peterson DAM (2017) Online video ad measurement for political science research. In: Big Data
go back to reference Tahir R, Ahmed F, Saeed H, Ali S, Zaffar F, Wilson C (2019) Bringing the kid back into youtube kids: detecting inappropriate content on video streaming platforms. In: ASONAM Tahir R, Ahmed F, Saeed H, Ali S, Zaffar F, Wilson C (2019) Bringing the kid back into youtube kids: detecting inappropriate content on video streaming platforms. In: ASONAM
go back to reference Tomlein M, Pecher B, Simko J, Srba I, Moro R, Stefancova E, Kompan M, Hrckova A, Podrouzek J, Bielikova M (2021) An audit of misinformation filter bubbles on youtube: Bubble bursting and recent behavior changes. In: Recsys Tomlein M, Pecher B, Simko J, Srba I, Moro R, Stefancova E, Kompan M, Hrckova A, Podrouzek J, Bielikova M (2021) An audit of misinformation filter bubbles on youtube: Bubble bursting and recent behavior changes. In: Recsys
go back to reference Whittaker J, Looney S, Reed A, Votta F (2021) Recommender systems and the amplification of extremist content. Internet Policy Rev 10(2):1–29CrossRef Whittaker J, Looney S, Reed A, Votta F (2021) Recommender systems and the amplification of extremist content. Internet Policy Rev 10(2):1–29CrossRef
Metadata
Title
Modeling rabbit-holes on YouTube
Authors
Erwan Le Merrer
Gilles Tredan
Ali Yesilkanat
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01105-9

Premium Partner