Skip to main content
Top

2020 | OriginalPaper | Chapter

4. Modeling the Calcium Silicate Hydrate by Molecular Simulation

Author : Dongshuai Hou

Published in: Molecular Simulation on Cement-Based Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chapter 2 reviewed the experimental, theoretical, and computational study on the molecular structure of the C–S–H gel. Experimental study provides the physical and chemical features of the C–S–H gel, which provides fundamental base for the modeling. Meanwhile, the theoretical contributions give valuable insights into the molecular structural evolution mechanism of the complicated cement hydrate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cong, X., & Kirkpatrick, R. (1996). 29Si MAS NMR study of the structure of calcium silicate hydrate. Advanced Cement Based Material, 3(3–4), 144–156.CrossRef Cong, X., & Kirkpatrick, R. (1996). 29Si MAS NMR study of the structure of calcium silicate hydrate. Advanced Cement Based Material, 3(3–4), 144–156.CrossRef
2.
go back to reference Janika, J. A., Kurdowsk, W., Podsiadey, R., & Samset, J. (2001). Fraxtal structure of CSH and tobermorite phases. Acta Physica Polonica, 100, 529–537.CrossRef Janika, J. A., Kurdowsk, W., Podsiadey, R., & Samset, J. (2001). Fraxtal structure of CSH and tobermorite phases. Acta Physica Polonica, 100, 529–537.CrossRef
3.
go back to reference Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium silicate hydrate in cement. Nature Material, 6, 311–316.CrossRef Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium silicate hydrate in cement. Nature Material, 6, 311–316.CrossRef
4.
go back to reference Merlino, S., Bonnacorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11 Å: Normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13(3), 577–590.CrossRef Merlino, S., Bonnacorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11 Å: Normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13(3), 577–590.CrossRef
5.
go back to reference Hamid, S. A. (1981). The crystal structure of the 11 Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·H2O. Zeitschrifit fur Kristallographie, 154(3–4), 189–198. Hamid, S. A. (1981). The crystal structure of the 11 Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·H2O. Zeitschrifit fur Kristallographie, 154(3–4), 189–198.
6.
go back to reference Bonnacorsi, E., Merlino, S., & Taylor, H. (2004). The crystal structure of Jennite Ca9Si6O18(OH)6·8H2O. Cement and Concrete Research, 34(9), 1481–1488.CrossRef Bonnacorsi, E., Merlino, S., & Taylor, H. (2004). The crystal structure of Jennite Ca9Si6O18(OH)6·8H2O. Cement and Concrete Research, 34(9), 1481–1488.CrossRef
7.
go back to reference Pellenq, R. J. M., Kushima, A., Shahsavari, R., Van Vliet, K. J., Buehler, M. J., & Yip, S. (2009). A realistic molecular model of cement hydrates. PNAS, 106(38), 16102–16107.CrossRef Pellenq, R. J. M., Kushima, A., Shahsavari, R., Van Vliet, K. J., Buehler, M. J., & Yip, S. (2009). A realistic molecular model of cement hydrates. PNAS, 106(38), 16102–16107.CrossRef
8.
go back to reference Shahsavari, R., Pellenq, R. J. M., & Ulm, F. J. (2011). Empirical force fields for complex hydrated calcio-silicate layered materials. Physical Chemistry Chemical Physics, 13(3), 1002–1011.CrossRef Shahsavari, R., Pellenq, R. J. M., & Ulm, F. J. (2011). Empirical force fields for complex hydrated calcio-silicate layered materials. Physical Chemistry Chemical Physics, 13(3), 1002–1011.CrossRef
9.
go back to reference Youssef, M., Pellenq, R. J. M., & Yildiz, B. (2011). Glassy nature of water in an ultraconfining disordered material: The case of calcium silicate hydrate. Journal of American Chemistry Society, 133(8), 2499–2510.CrossRef Youssef, M., Pellenq, R. J. M., & Yildiz, B. (2011). Glassy nature of water in an ultraconfining disordered material: The case of calcium silicate hydrate. Journal of American Chemistry Society, 133(8), 2499–2510.CrossRef
10.
go back to reference Bonnaud, P. A., Ji, Q., Coasne, B., Pellenq, R. J.-M., & Van Vliet, K. J. (2012). Thermodynamics of water confined in porous calcium-silicate-hydrates. Langmuir, 28(31), 11422–11432.CrossRef Bonnaud, P. A., Ji, Q., Coasne, B., Pellenq, R. J.-M., & Van Vliet, K. J. (2012). Thermodynamics of water confined in porous calcium-silicate-hydrates. Langmuir, 28(31), 11422–11432.CrossRef
11.
go back to reference Ji, Q., Pellenq, R. J. M., & Van Vliet, K. J. (2012). Comparison of computational water models for simulation of calcium silicate hydrate. Computational Material Science, 53(1), 234–240.CrossRef Ji, Q., Pellenq, R. J. M., & Van Vliet, K. J. (2012). Comparison of computational water models for simulation of calcium silicate hydrate. Computational Material Science, 53(1), 234–240.CrossRef
12.
go back to reference Qomi, M. J. A., Ulm, F. J., & Pellenq, R. J. M. (2012). Evidence on the dual nature of aluminum in the calcium-silicate-hydrates based on atomistic simulations. Journal of the American Ceramic Society, 95(3), 1128–1137. Qomi, M. J. A., Ulm, F. J., & Pellenq, R. J. M. (2012). Evidence on the dual nature of aluminum in the calcium-silicate-hydrates based on atomistic simulations. Journal of the American Ceramic Society, 95(3), 1128–1137.
13.
go back to reference Brough, A. R., Dobson, C. M., Richardson, I. G., & Groves, G. W. (1994). In situ solid-state NMR studies of Ca3SiO5: Hydration at room temperature and at elevated temperatures using 29Si enrichment. Journal of Materials Science, 29(15), 3926–3940.CrossRef Brough, A. R., Dobson, C. M., Richardson, I. G., & Groves, G. W. (1994). In situ solid-state NMR studies of Ca3SiO5: Hydration at room temperature and at elevated temperatures using 29Si enrichment. Journal of Materials Science, 29(15), 3926–3940.CrossRef
14.
go back to reference Richardson, I. G. (2013). The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides. Acta Crystallographica Section B, 69, 150–162.CrossRef Richardson, I. G. (2013). The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides. Acta Crystallographica Section B, 69, 150–162.CrossRef
15.
go back to reference Thomas, J. J., Chen, J., Jennings, H. M., & Neumann, D. A. (2003). Ca–OH bonding in the C–S–H gel of tricalcium silicate and white Portland cement pastes measured by inelastic neutron scattering. Chemistry of Materials, 15(20). Thomas, J. J., Chen, J., Jennings, H. M., & Neumann, D. A. (2003). Ca–OH bonding in the C–S–H gel of tricalcium silicate and white Portland cement pastes measured by inelastic neutron scattering. Chemistry of Materials, 15(20).
16.
go back to reference Manzano, H., Moeini, S., Marinelli, F., van Duin, A. C. T., Ulm, F. J., & Pellenq, R. J. M. (2011). Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties. Journal of the American Chemistry Society, 134(4), 2208–2215.CrossRef Manzano, H., Moeini, S., Marinelli, F., van Duin, A. C. T., Ulm, F. J., & Pellenq, R. J. M. (2011). Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties. Journal of the American Chemistry Society, 134(4), 2208–2215.CrossRef
17.
go back to reference Murray, S. J., Subramani, V. J., Selvam, R. P., & Hall, K. D. (2010). Molecular dynamics to understand the mechanical behavior of cement paste. Journal of the Transportation Research Board, 2142(11), 75–82.CrossRef Murray, S. J., Subramani, V. J., Selvam, R. P., & Hall, K. D. (2010). Molecular dynamics to understand the mechanical behavior of cement paste. Journal of the Transportation Research Board, 2142(11), 75–82.CrossRef
18.
go back to reference Dolado, J. S., Griebel, M., & Hamaekers, J. (2007). A molecular dynamic study of cementitious calcium silicate hydrate (C–S–H) gels. Journal of American Ceramic Society, 90, 3938–3942. Dolado, J. S., Griebel, M., & Hamaekers, J. (2007). A molecular dynamic study of cementitious calcium silicate hydrate (C–S–H) gels. Journal of American Ceramic Society, 90, 3938–3942.
19.
go back to reference Puibasset, J., & Pellenq, R. J. M. (2008). Grand canonical Monte Carlo simulation study of water adsorption in silicalite at 300 K. The Physical and Chemistry B, 112(20), 6390–6397.CrossRef Puibasset, J., & Pellenq, R. J. M. (2008). Grand canonical Monte Carlo simulation study of water adsorption in silicalite at 300 K. The Physical and Chemistry B, 112(20), 6390–6397.CrossRef
20.
go back to reference Gmira, A. (2003). Etude texturale et thermodynamique d’hydrates modèles du ciment. Orléans. Gmira, A. (2003). Etude texturale et thermodynamique d’hydrates modèles du ciment. Orléans.
21.
go back to reference Janik, Y., Kurdowski, W., Podsiadly, R., & Samseth, J. (2001). Fractal structure of CSH and tobermorite phases. Acta Physica Polonica Series A, 100(4), 529–538.CrossRef Janik, Y., Kurdowski, W., Podsiadly, R., & Samseth, J. (2001). Fractal structure of CSH and tobermorite phases. Acta Physica Polonica Series A, 100(4), 529–538.CrossRef
22.
go back to reference Yu, P., Kirkpatrick, R. J., Poe, B., McMillan, P. F., & Cong, X. (1999). Structure of calcium silicate hydrate (C–S–H): Near-, mid-, and far-infrared spectroscopy. Journal of the American Ceramic Society, 82(3), 742–748.CrossRef Yu, P., Kirkpatrick, R. J., Poe, B., McMillan, P. F., & Cong, X. (1999). Structure of calcium silicate hydrate (C–S–H): Near-, mid-, and far-infrared spectroscopy. Journal of the American Ceramic Society, 82(3), 742–748.CrossRef
23.
go back to reference Costantinide, G., & Ulm, F. (2006). The nanogranular nature of C–S–H. Journal of Mechanics and Physics of Solids, 55(1), 64–90.CrossRef Costantinide, G., & Ulm, F. (2006). The nanogranular nature of C–S–H. Journal of Mechanics and Physics of Solids, 55(1), 64–90.CrossRef
24.
go back to reference Gelb, L. D., & Gubbins, K. E. (1998). Characterization of porous glass: Simulation models, adsorption isotherms, and the Brunauer–Emmett–Teller analysis method. Langmuir, 14, 2097–2111.CrossRef Gelb, L. D., & Gubbins, K. E. (1998). Characterization of porous glass: Simulation models, adsorption isotherms, and the Brunauer–Emmett–Teller analysis method. Langmuir, 14, 2097–2111.CrossRef
25.
go back to reference Cormack, A., & Du, J. (2001). Molecular dynamics simulations of soda-lime-silicate glasses. Journal of Non-Crystalline Solids, 283–289. Cormack, A., & Du, J. (2001). Molecular dynamics simulations of soda-lime-silicate glasses. Journal of Non-Crystalline Solids, 283–289.
26.
go back to reference Mead, R. N., & Mountjoy, G. (2006). A molecular dynamics study of the atomic structure of (CaO)x(SiO2)1−x glasses. Journal of Physical Chemistry, 110(29), 273–278. Mead, R. N., & Mountjoy, G. (2006). A molecular dynamics study of the atomic structure of (CaO)x(SiO2)1−x glasses. Journal of Physical Chemistry, 110(29), 273–278.
27.
go back to reference Grimley, D. I., Wright, A. C., & Sinclair, R. N. (1990). Neutron scattering from vitreous silica IV. Time-of-flight diffraction. Journal of Non-Crystalline Solids, 119(1), 49–64.CrossRef Grimley, D. I., Wright, A. C., & Sinclair, R. N. (1990). Neutron scattering from vitreous silica IV. Time-of-flight diffraction. Journal of Non-Crystalline Solids, 119(1), 49–64.CrossRef
28.
go back to reference Mastelaro, V. R., Zanotto, E. D., Lequeux, N., & Cortes, R. J. (2000). Relationship between short-range order and ease of nucleation in Na2Ca2Si3O9, CaSiO3 and PbSiO3 glasses. Journal of Non-Crystalline Solids, 262(1–3), 191–199.CrossRef Mastelaro, V. R., Zanotto, E. D., Lequeux, N., & Cortes, R. J. (2000). Relationship between short-range order and ease of nucleation in Na2Ca2Si3O9, CaSiO3 and PbSiO3 glasses. Journal of Non-Crystalline Solids, 262(1–3), 191–199.CrossRef
29.
go back to reference Pellenq, R. J. M., Lequeux, N., & Damme, H. V. (2008). Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cement and Concrete Research, 38(2), 159–174.CrossRef Pellenq, R. J. M., Lequeux, N., & Damme, H. V. (2008). Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cement and Concrete Research, 38(2), 159–174.CrossRef
30.
go back to reference Feuston, B. P., & Garofalini, S. H. (1990). Oligomerization in silica sols. Journal of Physics and Chemistry, 94(13), 5351–5356.CrossRef Feuston, B. P., & Garofalini, S. H. (1990). Oligomerization in silica sols. Journal of Physics and Chemistry, 94(13), 5351–5356.CrossRef
31.
go back to reference Shahsavari, R., Buechler, M. J., Pellenq, R. J. M., & Ulm, F. J. (2009). First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite. Journal of American Ceramic Society, 92(10), 2323–2330. Shahsavari, R., Buechler, M. J., Pellenq, R. J. M., & Ulm, F. J. (2009). First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite. Journal of American Ceramic Society, 92(10), 2323–2330.
32.
go back to reference Zhu, T., Li, J., Lin, X., & Yip, S. (2007). Stress-dependent molecular pathways of silica–water reaction. Journal of Mechanics and Physics of Solids, 53(7), 1597–1623.CrossRef Zhu, T., Li, J., Lin, X., & Yip, S. (2007). Stress-dependent molecular pathways of silica–water reaction. Journal of Mechanics and Physics of Solids, 53(7), 1597–1623.CrossRef
33.
go back to reference Cong, X., & Kirkpatrick, R. (1996). 29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrate. Advances in Cement Based Materials, 3, 133–143.CrossRef Cong, X., & Kirkpatrick, R. (1996). 29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrate. Advances in Cement Based Materials, 3, 133–143.CrossRef
34.
go back to reference Chen, J. J., Thomas, J. J., Taylor, H. F. W., & Jennings, H. M. (2004). Solubility and structure of calcium silicate hydrate. Cement and Concrete Research, 34, 1499–1519.CrossRef Chen, J. J., Thomas, J. J., Taylor, H. F. W., & Jennings, H. M. (2004). Solubility and structure of calcium silicate hydrate. Cement and Concrete Research, 34, 1499–1519.CrossRef
35.
go back to reference Powers, T. C., & Brownyard, L. (1946–1947). Studies of the physical properties of hardened Portland cement paste. ACI Journal Proceedings, 43. Powers, T. C., & Brownyard, L. (1946–1947). Studies of the physical properties of hardened Portland cement paste. ACI Journal Proceedings, 43.
36.
go back to reference Feldman, R. F., & Sereda, P. J. (1968). A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Matériaux et Construction, 1(6), 509–520. Feldman, R. F., & Sereda, P. J. (1968). A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Matériaux et Construction, 1(6), 509–520.
37.
go back to reference Kumar, R., Schmidt, J. R., & Skinner, J. L. (2007). Hydrogen bonding definitions and dynamics in liquid water. The Journal of Chemical Physics, 126(20), 204107.CrossRef Kumar, R., Schmidt, J. R., & Skinner, J. L. (2007). Hydrogen bonding definitions and dynamics in liquid water. The Journal of Chemical Physics, 126(20), 204107.CrossRef
38.
go back to reference Pelisser, F., Gleize, P. J. P., & Mikowski, A. (2012). Effect of the Ca/Si molar ratio on the micro/nanomechanical properties of synthetic C–S–H measured by nanoindentation. The Journal of Physical Chemistry C, 116(32), 17219–17227.CrossRef Pelisser, F., Gleize, P. J. P., & Mikowski, A. (2012). Effect of the Ca/Si molar ratio on the micro/nanomechanical properties of synthetic C–S–H measured by nanoindentation. The Journal of Physical Chemistry C, 116(32), 17219–17227.CrossRef
Metadata
Title
Modeling the Calcium Silicate Hydrate by Molecular Simulation
Author
Dongshuai Hou
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8711-1_4

Premium Partners