Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2018

11-05-2018

Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

Author: L. B. Li

Published in: Mechanics of Composite Materials | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress–strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress–strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Naslain, “Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview,” Compos. Sci. Technol., 64, No. 2, 155-170 (2004).CrossRef R. Naslain, “Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview,” Compos. Sci. Technol., 64, No. 2, 155-170 (2004).CrossRef
2.
go back to reference L. B. Li, Y. D. Song, and Y. C. Sun, “Modeling tensile behavior of unidirectional C/SiC ceramic matrix composites,” Mech. Compos. Mater., 49, No. 6, 659-672 (2014).CrossRef L. B. Li, Y. D. Song, and Y. C. Sun, “Modeling tensile behavior of unidirectional C/SiC ceramic matrix composites,” Mech. Compos. Mater., 49, No. 6, 659-672 (2014).CrossRef
3.
go back to reference L. B. Li, Y. D. Song, and Y. C. Sun, “Modeling the tensile behavior of cross-ply C/SiC ceramic matrix composites,” Mech. Compos. Mater., 51, No. 3, 359-376 (2015).CrossRef L. B. Li, Y. D. Song, and Y. C. Sun, “Modeling the tensile behavior of cross-ply C/SiC ceramic matrix composites,” Mech. Compos. Mater., 51, No. 3, 359-376 (2015).CrossRef
4.
go back to reference W. A. Curtin, “Stress-strain behavior of brittle matrix composites, Comprehensive composite materials,” Elsevier Sci. Ltd. 4:47-76 (2000). W. A. Curtin, “Stress-strain behavior of brittle matrix composites, Comprehensive composite materials,” Elsevier Sci. Ltd. 4:47-76 (2000).
5.
go back to reference G. Camus, L. Guillaumat, and S. Baste, “Development of damage in a 2d woven C/SiC composite under mechanical loading: I. mechanical characterization,” Compos. Sci. Technol., 56, 1363-1372 (1996).CrossRef G. Camus, L. Guillaumat, and S. Baste, “Development of damage in a 2d woven C/SiC composite under mechanical loading: I. mechanical characterization,” Compos. Sci. Technol., 56, 1363-1372 (1996).CrossRef
6.
go back to reference G. N. Morscher, “Stress-dependent matrix cracking in 2d woven SiC-fiber reinforced melt-infiltrated SiC matrix composites,” Compos. Sci. Technol., 64, 1311-1319 (2004).CrossRef G. N. Morscher, “Stress-dependent matrix cracking in 2d woven SiC-fiber reinforced melt-infiltrated SiC matrix composites,” Compos. Sci. Technol., 64, 1311-1319 (2004).CrossRef
7.
go back to reference A. Dalmaz, P. Reynaud, D. Rouby, and G. Fantozzi, “Damage propagation in carbon/silicon carbide composites during tensile tests under the SEM,” J. Mater. Sci., 31, 4213-4219 (1996).CrossRef A. Dalmaz, P. Reynaud, D. Rouby, and G. Fantozzi, “Damage propagation in carbon/silicon carbide composites during tensile tests under the SEM,” J. Mater. Sci., 31, 4213-4219 (1996).CrossRef
8.
go back to reference Y. Wang, L. Zhang, L. Cheng, J. Ma, and W. Zhang, “Tensile performance and damage evolution of a 2.5d C/SiC composite characterized by acoustic emission,” Appl. Compos. Mater., 15, 183-188 (2008).CrossRef Y. Wang, L. Zhang, L. Cheng, J. Ma, and W. Zhang, “Tensile performance and damage evolution of a 2.5d C/SiC composite characterized by acoustic emission,” Appl. Compos. Mater., 15, 183-188 (2008).CrossRef
9.
go back to reference I. M. Daniel and J. W. Lee, “The behavior of ceramic matrix fiber composites under longitudinal loading,” Compos. Sci. Technol., 46, No. 2, 105-113 (1993).CrossRef I. M. Daniel and J. W. Lee, “The behavior of ceramic matrix fiber composites under longitudinal loading,” Compos. Sci. Technol., 46, No. 2, 105-113 (1993).CrossRef
10.
go back to reference J. Aveston, G. A. Cooper, and A. Kelly, “Single and multiple fracture,” Proc. Conf. Properties of Fiber Composites, England: National Physical Laboratory, IPC., 15-26 (1971). J. Aveston, G. A. Cooper, and A. Kelly, “Single and multiple fracture,” Proc. Conf. Properties of Fiber Composites, England: National Physical Laboratory, IPC., 15-26 (1971).
11.
go back to reference F. W. Zok and S. M. Spearing, “Matrix crack spacing in brittle matrix composites,” Acta Metallurgica et Materialia, 40, No. 8, 2033-2043 (1992).CrossRef F. W. Zok and S. M. Spearing, “Matrix crack spacing in brittle matrix composites,” Acta Metallurgica et Materialia, 40, No. 8, 2033-2043 (1992).CrossRef
12.
go back to reference H. Zhu and Y. Weitsman, “The progression of failure mechanisms in unidirectional reinforced ceramic composites,” J. Mech. Phys. of Solids, 42, No.10, 1601-1632 (1994).CrossRef H. Zhu and Y. Weitsman, “The progression of failure mechanisms in unidirectional reinforced ceramic composites,” J. Mech. Phys. of Solids, 42, No.10, 1601-1632 (1994).CrossRef
13.
go back to reference J. P. Solti, S. Mall, and D. D. Robertson, “Modeling damage in unidirectional ceramic-matrix composites,” Compos. Sci. Technol., 54, No.1, 55-66 (1995).CrossRef J. P. Solti, S. Mall, and D. D. Robertson, “Modeling damage in unidirectional ceramic-matrix composites,” Compos. Sci. Technol., 54, No.1, 55-66 (1995).CrossRef
14.
go back to reference W. A. Curtin, “Multiple matrix cracking in brittle matrix composites,” Acta Metallurgica et Materialia, 41, No.5, 1369-1377 (1993).CrossRef W. A. Curtin, “Multiple matrix cracking in brittle matrix composites,” Acta Metallurgica et Materialia, 41, No.5, 1369-1377 (1993).CrossRef
15.
go back to reference C. H. Hsueh, “Crack-wake interface debonding criterion for fiber-reinforced ceramic composites,” Acta Materialia, 44, No. 6, 2211-2216 (1996).CrossRef C. H. Hsueh, “Crack-wake interface debonding criterion for fiber-reinforced ceramic composites,” Acta Materialia, 44, No. 6, 2211-2216 (1996).CrossRef
16.
go back to reference Y. C. Gao, Y. W. Mai, and B. Cotterell, “Fracture of fiber-reinforced materials,” Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 39, No.4, 550-572 (1988).CrossRef Y. C. Gao, Y. W. Mai, and B. Cotterell, “Fracture of fiber-reinforced materials,” Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 39, No.4, 550-572 (1988).CrossRef
17.
go back to reference Y. J. Sun and R. N. Singh, “The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite,” Acta Materialia, 46, No. 5, 1657-1667 (1998).CrossRef Y. J. Sun and R. N. Singh, “The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite,” Acta Materialia, 46, No. 5, 1657-1667 (1998).CrossRef
18.
go back to reference M. D. Thouless and A. G. Evans, “Effects of pull-out on the mechanical properties of ceramic matrix composites,”Acta Metallurgica, 36, No. 3, 517-522 (1988).CrossRef M. D. Thouless and A. G. Evans, “Effects of pull-out on the mechanical properties of ceramic matrix composites,”Acta Metallurgica, 36, No. 3, 517-522 (1988).CrossRef
19.
go back to reference H. C. Cao and M. D. Thouless, “Tensile tests of ceramic-matrix composites: theory and experiment,” J. Am. Ceramic Soc., 73, No. 7, 2091-2094 (1990).CrossRef H. C. Cao and M. D. Thouless, “Tensile tests of ceramic-matrix composites: theory and experiment,” J. Am. Ceramic Soc., 73, No. 7, 2091-2094 (1990).CrossRef
20.
go back to reference M. Sutcu, “Weibull statistics applied to fiber failure in ceramic composites and work of fracture,” Acta Metallurgica, 37, No. 2, 651-661 (1989).CrossRef M. Sutcu, “Weibull statistics applied to fiber failure in ceramic composites and work of fracture,” Acta Metallurgica, 37, No. 2, 651-661 (1989).CrossRef
21.
go back to reference H. R. Schwietert and P. S. Steif, “A theory for the ultimate strength of a brittle-matrix composite,” J. Mech. Phys. Solids, 38, No. 3, 325-343 (1990).CrossRef H. R. Schwietert and P. S. Steif, “A theory for the ultimate strength of a brittle-matrix composite,” J. Mech. Phys. Solids, 38, No. 3, 325-343 (1990).CrossRef
22.
go back to reference W. A. Curtin, “Theory of mechanical properties of ceramic-matrix composites,” J. Am. Ceramic Soc., 74, No. 11, 2837-2845 (1991).CrossRef W. A. Curtin, “Theory of mechanical properties of ceramic-matrix composites,” J. Am. Ceramic Soc., 74, No. 11, 2837-2845 (1991).CrossRef
23.
go back to reference Y. Weitsman and H. Zhu, “Multi-fracture of ceramic composites,” J. Mech. Phys. Solids, 41, No. 2, 351-388 (1993).CrossRef Y. Weitsman and H. Zhu, “Multi-fracture of ceramic composites,” J. Mech. Phys. Solids, 41, No. 2, 351-388 (1993).CrossRef
24.
go back to reference F. Hild, J. M. Domergue, F. A. Leckie, and A. G. Evans, “Tensile and flexural ultimate strength of fiber-reinforced ceramic-matrix composites,” Int. J. Solids and Struct., 31, No. 7, 1035-1045 (1994).CrossRef F. Hild, J. M. Domergue, F. A. Leckie, and A. G. Evans, “Tensile and flexural ultimate strength of fiber-reinforced ceramic-matrix composites,” Int. J. Solids and Struct., 31, No. 7, 1035-1045 (1994).CrossRef
25.
go back to reference W. A. Curtin, B. K. Ahn, and N. Takeda, “Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites,” Acta Materialia, 46, No. 10, 3409-3420 (1998).CrossRef W. A. Curtin, B. K. Ahn, and N. Takeda, “Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites,” Acta Materialia, 46, No. 10, 3409-3420 (1998).CrossRef
26.
go back to reference R. Paar, J.-L.Valles, and R. Danzer, “Influence of fiber properties on the mechanical behavior of unidirectionallyreinforced ceramic matrix composites,” Mater. Sci. Eng. A, 250, No. 2, 209-216 (1998).CrossRef R. Paar, J.-L.Valles, and R. Danzer, “Influence of fiber properties on the mechanical behavior of unidirectionallyreinforced ceramic matrix composites,” Mater. Sci. Eng. A, 250, No. 2, 209-216 (1998).CrossRef
27.
go back to reference K. Liao and K. L. Reifsnider, “A tensile strength model for unidirectional fiber-reinforced brittle matrix composite,” Int. J. Fracture, 106, No.2, 95-115 (2000).CrossRef K. Liao and K. L. Reifsnider, “A tensile strength model for unidirectional fiber-reinforced brittle matrix composite,” Int. J. Fracture, 106, No.2, 95-115 (2000).CrossRef
28.
go back to reference S. J. Zhou and W. A. Curtin, “Failure of fiber composites: a lattice green function model,” Acta Metallurgica et Materialia, 43, No. 8, 3093-3104 (1995).CrossRef S. J. Zhou and W. A. Curtin, “Failure of fiber composites: a lattice green function model,” Acta Metallurgica et Materialia, 43, No. 8, 3093-3104 (1995).CrossRef
29.
go back to reference R. E. Dutton, N. J. Pagano, and R. Y. Kim, “Modeling the ultimate tensile strength of unidirectional glass-matrix composites,” J. Am. Ceramic Soc., 83, No.1, 166-174 (2000).CrossRef R. E. Dutton, N. J. Pagano, and R. Y. Kim, “Modeling the ultimate tensile strength of unidirectional glass-matrix composites,” J. Am. Ceramic Soc., 83, No.1, 166-174 (2000).CrossRef
30.
go back to reference Z. Xia and W. A. Curtin, “Toughness-to-brittle transitions in ceramic-matrix composites with increasing interfacial shear stress,” Acta Materialia, 48, No.20, 4879-4892 (2000).CrossRef Z. Xia and W. A. Curtin, “Toughness-to-brittle transitions in ceramic-matrix composites with increasing interfacial shear stress,” Acta Materialia, 48, No.20, 4879-4892 (2000).CrossRef
31.
go back to reference Y. Q. Wang, L. T. Zhang, and L. F. Cheng. “Tensile behavior of a 2D and 2.5D C/SiC composites fabricated by chemicalvapor infiltration,” J. Chinese Ceramic Soc., 36, No.8, 1062-1068 (2008). Y. Q. Wang, L. T. Zhang, and L. F. Cheng. “Tensile behavior of a 2D and 2.5D C/SiC composites fabricated by chemicalvapor infiltration,” J. Chinese Ceramic Soc., 36, No.8, 1062-1068 (2008).
32.
go back to reference H. Mei, L. F. Cheng, and L. T. Zhang. “Damage evolution and microstructural characterization of a cross-woven C/SiC composite under tensile loading,” J. Chinese Ceramic Soc., 35, No.2, 137-143 (2007). H. Mei, L. F. Cheng, and L. T. Zhang. “Damage evolution and microstructural characterization of a cross-woven C/SiC composite under tensile loading,” J. Chinese Ceramic Soc., 35, No.2, 137-143 (2007).
33.
go back to reference Y. Q. Wang, L. T. Zhang, and L. F. Cheng. “Tensile performance and damage evolution of a 2.5-D C/SiC composite characterized by acoustic emission,” Appl. Compos. Mater., 15, 183-188 (2008).CrossRef Y. Q. Wang, L. T. Zhang, and L. F. Cheng. “Tensile performance and damage evolution of a 2.5-D C/SiC composite characterized by acoustic emission,” Appl. Compos. Mater., 15, 183-188 (2008).CrossRef
Metadata
Title
Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites
Author
L. B. Li
Publication date
11-05-2018
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2018
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9729-5

Other articles of this Issue 2/2018

Mechanics of Composite Materials 2/2018 Go to the issue

Premium Partners