Skip to main content
Top
Published in: Mechanics of Composite Materials 5/2023

22-11-2023

Modeling the Yield Surface of a Composite Made from Rigid-Plastic Materials Using Piecewise Quadratic Yield Criteria 1. The General Case of a Plane Multidirectional Reinforcement

Author: A. P. Yankovskii

Published in: Mechanics of Composite Materials | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A structural model of the mechanics of composites for calculating their yield surfaces in the 3D space of averaged stresses in the plane stress state (PSS) is developed. The composite is multidirectionally reinforced in the parallel planes with continuous fibers of different physical nature (a hybrid composite). The materials of composition constituents are isotropic and have different yield strengths in tension and compression. In all constituents, a complex stress state is taken into account. The mechanical behavior of materials of the composition is described by the associated flow law for an ideal rigid-plastic body with piecewise quadratic and piecewise linear yield conditions in the space of principal stresses of the PSS. In addition to average stresses, the average strain rates in the limit state of the composite are also determined. The conditions under which the flow curves of constituents of the composition in the PSS satisfy the Drucker postulate, i.e., are convex, are analyzed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. V. Vasiliev and E. Morozov, Advanced Mechanics of Composite Materials and Structural Elements, Elsever, Amsterdam (2013). V. V. Vasiliev and E. Morozov, Advanced Mechanics of Composite Materials and Structural Elements, Elsever, Amsterdam (2013).
2.
go back to reference S. K. Gill, M. Gupta, and P. Satsangi, “Prediction of cutting forces in machining of unidirectional glass-fiber-reinforced plastic composites,” Frontiers of Mechanical Eng., 8, No. 2, 187-200 (2013).CrossRef S. K. Gill, M. Gupta, and P. Satsangi, “Prediction of cutting forces in machining of unidirectional glass-fiber-reinforced plastic composites,” Frontiers of Mechanical Eng., 8, No. 2, 187-200 (2013).CrossRef
3.
go back to reference Yu. S. Solomonov, V. P. Georgievsky, A. Ya. Nedbay, and V. A. Andryushin, Applied Problems of the Mechanics of Composite Cylindrical Shells [in Russian], Fizmatlit, Moscow (2014). Yu. S. Solomonov, V. P. Georgievsky, A. Ya. Nedbay, and V. A. Andryushin, Applied Problems of the Mechanics of Composite Cylindrical Shells [in Russian], Fizmatlit, Moscow (2014).
4.
go back to reference R. F. Gibson, Principles of Composite Material Mechanics, 4rd ed., CRC Press, Taylor & Francis Group, Boca Raton (2015). R. F. Gibson, Principles of Composite Material Mechanics, 4rd ed., CRC Press, Taylor & Francis Group, Boca Raton (2015).
5.
go back to reference N. A. Abrosimov and V. G. Bazhenov, Nonlinear Problems of the Dynamics of Composite Structures [in Russian], Publishing House of UNN, Nizhny Novgorod (2002). N. A. Abrosimov and V. G. Bazhenov, Nonlinear Problems of the Dynamics of Composite Structures [in Russian], Publishing House of UNN, Nizhny Novgorod (2002).
6.
go back to reference Z. Kazanci, “Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses,” Int. J. Non-Linear Mech., 46, 807-817 (2011).CrossRef Z. Kazanci, “Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses,” Int. J. Non-Linear Mech., 46, 807-817 (2011).CrossRef
7.
go back to reference A. Yonezu, K. Yoneda, H. Hirakata, M. Sakihara, and K. Minoshima, “A simple method to evaluate anisotropic plastic properties based on dimensionless function of single spheri-cal indentation — Application to SiC whisker-reinforced aluminum alloy,” Mater. Sci. and Eng., A, 527, 7646-7657 (2010). A. Yonezu, K. Yoneda, H. Hirakata, M. Sakihara, and K. Minoshima, “A simple method to evaluate anisotropic plastic properties based on dimensionless function of single spheri-cal indentation — Application to SiC whisker-reinforced aluminum alloy,” Mater. Sci. and Eng., A, 527, 7646-7657 (2010).
8.
go back to reference Yu. Mao-hong, “Advances in strength theories for materials under complex stress state in the 20th century,” ASME. Appl. Mech. Rev., 55, No. 3, 169-200 (2002).CrossRef Yu. Mao-hong, “Advances in strength theories for materials under complex stress state in the 20th century,” ASME. Appl. Mech. Rev., 55, No. 3, 169-200 (2002).CrossRef
9.
go back to reference M. S. Qatu, R. W. Sullivan, and W. Wang, “Recent research advances on the dynamic analysis of composite shells: 2000-2009,” Compos. Struct., 93, 14-31 (2010).CrossRef M. S. Qatu, R. W. Sullivan, and W. Wang, “Recent research advances on the dynamic analysis of composite shells: 2000-2009,” Compos. Struct., 93, 14-31 (2010).CrossRef
10.
go back to reference F. D. Morinière, R. C. Alderliesten, and R. Benrdictus, “Modeling of impact damage and dynamics in fiber-metal laminates. A review,” Int. J. Impact Eng., 67, 27-38 (2014).CrossRef F. D. Morinière, R. C. Alderliesten, and R. Benrdictus, “Modeling of impact damage and dynamics in fiber-metal laminates. A review,” Int. J. Impact Eng., 67, 27-38 (2014).CrossRef
11.
go back to reference G. He, Y. Liu, Y. Hammi, D. J. Bammann, and M. F. Horstemeyer, “A combined viscoelasticity-viscoplasticity-anisotropic damage model with evolving internal state variables applied to fiber reinforced polymer composites,” Mech. Adv. Mater. and Struct., No. 0 (2020). DOI:https://doi.org/10.1080/15376494.2019.1709673 G. He, Y. Liu, Y. Hammi, D. J. Bammann, and M. F. Horstemeyer, “A combined viscoelasticity-viscoplasticity-anisotropic damage model with evolving internal state variables applied to fiber reinforced polymer composites,” Mech. Adv. Mater. and Struct., No. 0 (2020). DOI:https://​doi.​org/​10.​1080/​15376494.​2019.​1709673
12.
go back to reference T. P. Romanova and A. P. Yankovskii, “Piecewise-linear yield loci of angle-ply reinforced medium of different-resisting rigid-plastic materials at 2D stress state,” Mech. Solids, 55, No. 8, 1235-1252 (2020).CrossRef T. P. Romanova and A. P. Yankovskii, “Piecewise-linear yield loci of angle-ply reinforced medium of different-resisting rigid-plastic materials at 2D stress state,” Mech. Solids, 55, No. 8, 1235-1252 (2020).CrossRef
13.
go back to reference T. P. Romanova and A. P. Yankovskii, “Structural model for rigid-plastic yielding behavior of angle-ply reinforced composites of materials with different properties in tension and compression considering 2D stress state in all constituents,” Mech. Adv. Mater. and Struct., 28, No. 20, 2151-2162 (2021).CrossRef T. P. Romanova and A. P. Yankovskii, “Structural model for rigid-plastic yielding behavior of angle-ply reinforced composites of materials with different properties in tension and compression considering 2D stress state in all constituents,” Mech. Adv. Mater. and Struct., 28, No. 20, 2151-2162 (2021).CrossRef
14.
go back to reference Yu. V. Nemirovsky and B. S. Resnikov, “On limit of equilibrium reinforced slabs and effective-ness of their reinforcement,” Arch. Inz. Lad., 21, No. 1, 57-67 (1975). Yu. V. Nemirovsky and B. S. Resnikov, “On limit of equilibrium reinforced slabs and effective-ness of their reinforcement,” Arch. Inz. Lad., 21, No. 1, 57-67 (1975).
15.
go back to reference Z. Mroz and F. G. Shamiev, “Simplified yield condition for fiber-reinforced plates and shells,” Arch. Inz. Lad., 25, No. 3, 463-476 (1979). Z. Mroz and F. G. Shamiev, “Simplified yield condition for fiber-reinforced plates and shells,” Arch. Inz. Lad., 25, No. 3, 463-476 (1979).
16.
go back to reference M. Kh. Ilyasov and A. A. Jahangirov, “Yield hypersurfaces of a three-layer composite shell, the middle layer of which is reinforced with fibers,” Mech. Compos. Mater., 50, No. 3, 487-500 (2014). M. Kh. Ilyasov and A. A. Jahangirov, “Yield hypersurfaces of a three-layer composite shell, the middle layer of which is reinforced with fibers,” Mech. Compos. Mater., 50, No. 3, 487-500 (2014).
17.
go back to reference A. A. Jahangirov, “Load-carrying capacity of a fiber-reinforced annular tree-layer composite plate clamped on its external and internal contours,” Mech. Compos. Mater., 52, No. 2, 271-280 (2016).CrossRef A. A. Jahangirov, “Load-carrying capacity of a fiber-reinforced annular tree-layer composite plate clamped on its external and internal contours,” Mech. Compos. Mater., 52, No. 2, 271-280 (2016).CrossRef
18.
go back to reference T. P. Romanova and A. P. Yankovskii, “Constructing yield loci for rigid-plastic reinforced plates considering the 2D stress state in fibers,” Mech. Compos. Mater., 54, No. 6, 697-718 (2019).CrossRef T. P. Romanova and A. P. Yankovskii, “Constructing yield loci for rigid-plastic reinforced plates considering the 2D stress state in fibers,” Mech. Compos. Mater., 54, No. 6, 697-718 (2019).CrossRef
19.
go back to reference D. Kolarov, A. Baltov, and N. Boncheva, Mechanics of Plastic Media [in Russian], Mir, Moscow (1979). D. Kolarov, A. Baltov, and N. Boncheva, Mechanics of Plastic Media [in Russian], Mir, Moscow (1979).
20.
go back to reference L. W. Hu Modified, “Tresks’s yield condition and associated flow rules for anisotropic materials and applications,” J. Franclin Inst., 265, No. 3, 187-204 (1958). L. W. Hu Modified, “Tresks’s yield condition and associated flow rules for anisotropic materials and applications,” J. Franclin Inst., 265, No. 3, 187-204 (1958).
21.
go back to reference G. I. Bykovtsev and D. D. Ivlev, Theory of Plasticity [in Russian], Dalnauka, Vladivostok (1998). G. I. Bykovtsev and D. D. Ivlev, Theory of Plasticity [in Russian], Dalnauka, Vladivostok (1998).
22.
go back to reference B. C. Jensen, “Lines of discontinuity for displacements in the theory of plasticity of plain and reinforced concrete,” Magazine of Concrete Research, 17, No. 92, 143-150 (1975).CrossRef B. C. Jensen, “Lines of discontinuity for displacements in the theory of plasticity of plain and reinforced concrete,” Magazine of Concrete Research, 17, No. 92, 143-150 (1975).CrossRef
23.
go back to reference Yu. Mao-hong, “Advances in strength theories for materials under complex stress state in the 20th century,” Appl. Mech. Rev., 55, No. 3, 169-200 (2002).CrossRef Yu. Mao-hong, “Advances in strength theories for materials under complex stress state in the 20th century,” Appl. Mech. Rev., 55, No. 3, 169-200 (2002).CrossRef
24.
go back to reference R. J. Green, “A plasticity theory for porous solids,” Int. J. Mech. Sci., 14, No. 4, 215-224 (1972).CrossRef R. J. Green, “A plasticity theory for porous solids,” Int. J. Mech. Sci., 14, No. 4, 215-224 (1972).CrossRef
25.
go back to reference V. D. Rud and V. Z. Midukov, “Experimental verification of hypotheses of plasticity of porous bodies,” Poroshk. Metallurgi, No. 1, 14-20 (1982). V. D. Rud and V. Z. Midukov, “Experimental verification of hypotheses of plasticity of porous bodies,” Poroshk. Metallurgi, No. 1, 14-20 (1982).
26.
go back to reference N. N. Malinin, Applied Theory of Plasticity and Creep, M., Mashinostroenie (1968). N. N. Malinin, Applied Theory of Plasticity and Creep, M., Mashinostroenie (1968).
27.
go back to reference B. Budiansky, “A reassessment of deformation theories of plasticity,” J. Appl. Mech., 26, No. 2 (1959). B. Budiansky, “A reassessment of deformation theories of plasticity,” J. Appl. Mech., 26, No. 2 (1959).
28.
go back to reference L. W. Weeton and E. Scala, Composites: State of Art, AIME, New York (1974). L. W. Weeton and E. Scala, Composites: State of Art, AIME, New York (1974).
29.
go back to reference Composite materials. Handbook, Ed. D. M. Karpinos [in Russian], Naukova Dumka, Kyiv (1985). Composite materials. Handbook, Ed. D. M. Karpinos [in Russian], Naukova Dumka, Kyiv (1985).
30.
go back to reference A.-J. Wang and D. L. McDowell, “Yield surfaces of various periodic metal honeycombs at intermediate relative density,” Int. J. Plasticity, 21, 285-320 (2005).CrossRef A.-J. Wang and D. L. McDowell, “Yield surfaces of various periodic metal honeycombs at intermediate relative density,” Int. J. Plasticity, 21, 285-320 (2005).CrossRef
31.
go back to reference Composite materials: Handbook, ed. V. V. Vasiliev, V. D. Protasov, V. V. Bolotin and others [in Russian], Mashinostroenie, Moscow (1990). Composite materials: Handbook, ed. V. V. Vasiliev, V. D. Protasov, V. V. Bolotin and others [in Russian], Mashinostroenie, Moscow (1990).
32.
go back to reference A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Resistance of Polymeric and Composite Materials [in Russian], Zinatne, Riga (1980). A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Resistance of Polymeric and Composite Materials [in Russian], Zinatne, Riga (1980).
33.
go back to reference A. G. Kurosh, Course of Higher Algebra [in Russian], Fizmatgiz, Moscow (1959). A. G. Kurosh, Course of Higher Algebra [in Russian], Fizmatgiz, Moscow (1959).
Metadata
Title
Modeling the Yield Surface of a Composite Made from Rigid-Plastic Materials Using Piecewise Quadratic Yield Criteria 1. The General Case of a Plane Multidirectional Reinforcement
Author
A. P. Yankovskii
Publication date
22-11-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 5/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10144-4

Other articles of this Issue 5/2023

Mechanics of Composite Materials 5/2023 Go to the issue

Premium Partners