Skip to main content
Top
Published in: Environmental Earth Sciences 4/2015

01-08-2015 | Original Article

Modeling water requirements of major crops and their responses to climate change in the North China Plain

Published in: Environmental Earth Sciences | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The North China Plain (NCP) is one of the most important food production bases in China. However, its agriculture water resources are threatened by climate change. In this paper, the CROPWAT model is used to evaluate crop water requirement (CWR), crop green water requirement (CGWR), and crop blue water requirement (CBWR) for main crops in NCP (winter wheat, summer maize, cotton, millet, and soybean) with a spatial resolution of 5 arc-minute from 1961 to 2010. Their responses to future climate changes are investigated. The results show that the mean annual total CWR of the main crops during growing periods amounted to 114.68 km3 a−1 in the past 50 years. More than 72 % of CWR to support NCP crop production is green water. The spatial distributions of CWR, CGWR, and CBWR are closely related to the planting areas and irrigation availability. Summer maize, millet, and soybean are high CGWR crops with proportions of above 84 %, while the lowest CGWR proportion is in winter wheat, 58.89 %. For climate change impacts in future, holding the crop planting system and irrigation conditions unchanged, it is projected that the total CWR in 2030s will require approximately 8.75–11.25 km3 a−1 additional water. Results show that the CWR increase in 2030s is mainly due to the increase in temperature. Under the projected temperature in 2030s and the current rainfall scenario, total CWR, CGWR, and CBWR increments were 8.58, 1.76, and 6.82 km3 a−1, respectively. Nearly 80 % of the CWR increment is from the increase in CBWR. Therefore, agricultural water shortage crisis will further aggravate under future climate change scenarios in NCP, and effective water-saving measures must be taken to mitigate the negative effects of climate change.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, Rome Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, Rome
go back to reference Antonellini M, Dentinho T, Khattabi A, Masson E, Mollema PN, Silva V, Silveira P (2014) An integrated methodology to assess future water resources under land use and climate change: an application to the Tahadart drainage basin (Morocco). Environ Earth Sci 71(4):1839–1853CrossRef Antonellini M, Dentinho T, Khattabi A, Masson E, Mollema PN, Silva V, Silveira P (2014) An integrated methodology to assess future water resources under land use and climate change: an application to the Tahadart drainage basin (Morocco). Environ Earth Sci 71(4):1839–1853CrossRef
go back to reference Chen YM, Guo GS (1993) A contour map book of main crops water requirement in China. Beijing: China Agriculture Science Press. ISBN: 7800264041/9787800264047 Chen YM, Guo GS (1993) A contour map book of main crops water requirement in China. Beijing: China Agriculture Science Press. ISBN: 7800264041/9787800264047
go back to reference Chen C, Wang EL, Yu Q (2010) Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agric Water Manage 97(8):1175–1184CrossRef Chen C, Wang EL, Yu Q (2010) Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agric Water Manage 97(8):1175–1184CrossRef
go back to reference Chen C, Hagemann S, Liu J (2014) Assessment of impact of climate change on the blue and green water resources in large river basins in China. Environ Earth Sci. doi:10.1007/s12665-014-3782-8 Chen C, Hagemann S, Liu J (2014) Assessment of impact of climate change on the blue and green water resources in large river basins in China. Environ Earth Sci. doi:10.​1007/​s12665-014-3782-8
go back to reference Conrad C, Rahmann M, Machwitz M, Stulina G, Paeth H, Dech S (2013) Satellite based calculation of spatially distributed crop water requirements for cotton and wheat cultivation in Fergana Valley, Uzbekistan. Global Planet Change 110:88–98CrossRef Conrad C, Rahmann M, Machwitz M, Stulina G, Paeth H, Dech S (2013) Satellite based calculation of spatially distributed crop water requirements for cotton and wheat cultivation in Fergana Valley, Uzbekistan. Global Planet Change 110:88–98CrossRef
go back to reference Ding YH, Ren GY, Shi GY, Gong P, Zheng XH, Zhai PM, Zhang DE, Zhao ZC, Wang ZW, Wang HJ, Luo Y, Chen DL, Gao XJ, Dai XS (2006) National assessment report of climate change (I): climate change in China and its future trend. Adv Clim Change Res 2:3–8. doi:10.3969/j.issn.1673-1719.2006.01.001 (in Chinese) Ding YH, Ren GY, Shi GY, Gong P, Zheng XH, Zhai PM, Zhang DE, Zhao ZC, Wang ZW, Wang HJ, Luo Y, Chen DL, Gao XJ, Dai XS (2006) National assessment report of climate change (I): climate change in China and its future trend. Adv Clim Change Res 2:3–8. doi:10.​3969/​j.​issn.​1673-1719.​2006.​01.​001 (in Chinese)
go back to reference Duan AW (2004) Irrigation water quota of main crops in the northern areas. Beijing: China Agriculture Science Press. ISBN: 7801676815/9787801676818 Duan AW (2004) Irrigation water quota of main crops in the northern areas. Beijing: China Agriculture Science Press. ISBN: 7801676815/9787801676818
go back to reference Fader M, Gerten D, Thammer M, Heinke J, Lotze-Campen H, Lucht W, Cramer W (2011) Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol Earth Syst Sci 15:1641–1660CrossRef Fader M, Gerten D, Thammer M, Heinke J, Lotze-Campen H, Lucht W, Cramer W (2011) Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol Earth Syst Sci 15:1641–1660CrossRef
go back to reference Falkenmark M (2003) Freshwater as shared between society and ecosystems: From divided approaches to integrated challenges. Philos Trans R Soc Lond B Biol Sci 358(1440):2037–2049CrossRef Falkenmark M (2003) Freshwater as shared between society and ecosystems: From divided approaches to integrated challenges. Philos Trans R Soc Lond B Biol Sci 358(1440):2037–2049CrossRef
go back to reference Fan L, Lu CH, Yang B, Chen Z (2012) Long-term trends of precipitation in the North China Plain. J Geogr Sci 22(6):989–1001CrossRef Fan L, Lu CH, Yang B, Chen Z (2012) Long-term trends of precipitation in the North China Plain. J Geogr Sci 22(6):989–1001CrossRef
go back to reference George BA, Shende SA, Raghuwanshi NS (2000) Development and testing of an irrigation scheduling model. Agric Water Manage 46(2):121–136CrossRef George BA, Shende SA, Raghuwanshi NS (2000) Development and testing of an irrigation scheduling model. Agric Water Manage 46(2):121–136CrossRef
go back to reference Guo RP, Lin ZH, Mo XG, Yang CL (2010) Responses of crop yield and water use efficiency to climate change in the North China Plain. Agric Water Manage 97(8):1185–1194CrossRef Guo RP, Lin ZH, Mo XG, Yang CL (2010) Responses of crop yield and water use efficiency to climate change in the North China Plain. Agric Water Manage 97(8):1185–1194CrossRef
go back to reference Hoff H, Falkenmark M, Gerten D, Gordon L, Karlberg L, Rocksstroem J (2010) Greening the global water system. J Hydrol 384:177–186CrossRef Hoff H, Falkenmark M, Gerten D, Gordon L, Karlberg L, Rocksstroem J (2010) Greening the global water system. J Hydrol 384:177–186CrossRef
go back to reference IPCC (Intergovernmental Panel on Climate Change) (2013) Climate Change 2013: The Physical Science Basis [M/OL]. Cambridge University Press, Cambridge IPCC (Intergovernmental Panel on Climate Change) (2013) Climate Change 2013: The Physical Science Basis [M/OL]. Cambridge University Press, Cambridge
go back to reference Iqbal MA, Shen YJ, Stricevic R, Pei HW, Sun HY, Amiri E, Penas A, Rio SD (2014) Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agric Water Manage 135:61–72CrossRef Iqbal MA, Shen YJ, Stricevic R, Pei HW, Sun HY, Amiri E, Penas A, Rio SD (2014) Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agric Water Manage 135:61–72CrossRef
go back to reference Li KN, Yang XG, Liu ZJ, Zhang TY, Lu S, Liu Y (2014) Low yield gap of winter wheat in the North China Plain. Eur J Agron 59:1–12CrossRef Li KN, Yang XG, Liu ZJ, Zhang TY, Lu S, Liu Y (2014) Low yield gap of winter wheat in the North China Plain. Eur J Agron 59:1–12CrossRef
go back to reference Liu XY, Lin ED (2004) Impact of climate change on water requirement of main crops in North China. SHUILI XUEBAO 2:77–87 (in Chinese) Liu XY, Lin ED (2004) Impact of climate change on water requirement of main crops in North China. SHUILI XUEBAO 2:77–87 (in Chinese)
go back to reference Liu J, Savenije HHG (2008) Food consumption patterns and their effect on water requirement in China. Hydrol Earth Syst Sci 12:887–898CrossRef Liu J, Savenije HHG (2008) Food consumption patterns and their effect on water requirement in China. Hydrol Earth Syst Sci 12:887–898CrossRef
go back to reference Liu J, Yang H (2010) Spatially explicit assessment of global consumptive water uses in cropland: Green and blue water. J Hydrol 384:187–197CrossRef Liu J, Yang H (2010) Spatially explicit assessment of global consumptive water uses in cropland: Green and blue water. J Hydrol 384:187–197CrossRef
go back to reference Liu JG, Wiberg D, Zehnder AJB, Yang H (2007) Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrig Sci 26:21–33CrossRef Liu JG, Wiberg D, Zehnder AJB, Yang H (2007) Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrig Sci 26:21–33CrossRef
go back to reference Liu J, Zehnder AJB, Yang H (2009) Global consumptive water use for crop production: the importance of green water and virtual water. Water Resour Res 45(5):W05428. 10.1029/2007WR006051 Liu J, Zehnder AJB, Yang H (2009) Global consumptive water use for crop production: the importance of green water and virtual water. Water Resour Res 45(5):W05428. 10.​1029/​2007WR006051
go back to reference Liu J, Folberth C, Yang H, Röckström J, Abbaspour K, Zehnder AJB (2013) A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PLoS One 8(2):e57750. doi:10.1371/journal.pone.0057750 CrossRef Liu J, Folberth C, Yang H, Röckström J, Abbaspour K, Zehnder AJB (2013) A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PLoS One 8(2):e57750. doi:10.​1371/​journal.​pone.​0057750 CrossRef
go back to reference Lu SL, Wu BF, Wei YP, Yan N, Wang H, Guo SY (2015) Quantifying impacts of climate variability and human activities on the hydrological system of the Haihe River Basin, China. Environ Earth Sci 73:1491–1503. doi:10.1007/s12665-014-3799-8 CrossRef Lu SL, Wu BF, Wei YP, Yan N, Wang H, Guo SY (2015) Quantifying impacts of climate variability and human activities on the hydrological system of the Haihe River Basin, China. Environ Earth Sci 73:1491–1503. doi:10.​1007/​s12665-014-3799-8 CrossRef
go back to reference Mimi ZA, Jamous SA (2010) Climate change and agricultural water demand: impacts and adaptations. Afr J Environ Sci Technol 4(4):183–191 Mimi ZA, Jamous SA (2010) Climate change and agricultural water demand: impacts and adaptations. Afr J Environ Sci Technol 4(4):183–191
go back to reference Mo X, Liu S, Lin Z, Xu Y, Xiang Y, Mc Vicar TR (2005) Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecol Model 183:301–322CrossRef Mo X, Liu S, Lin Z, Xu Y, Xiang Y, Mc Vicar TR (2005) Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecol Model 183:301–322CrossRef
go back to reference Mo XG, Liu SX, Lin ZH, Guo RP (2009) Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agr Ecosyst Environ 134:67–78CrossRef Mo XG, Liu SX, Lin ZH, Guo RP (2009) Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agr Ecosyst Environ 134:67–78CrossRef
go back to reference Mo XG, Guo RP, Liu SX, Lin ZH, Hu S (2013) Impacts of climate change on crop evapotranspiration with ensemble GCM projections in the North China Plain. Clim Change 120:299–312CrossRef Mo XG, Guo RP, Liu SX, Lin ZH, Hu S (2013) Impacts of climate change on crop evapotranspiration with ensemble GCM projections in the North China Plain. Clim Change 120:299–312CrossRef
go back to reference Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cy 22, GB1022, doi:10.1029/2007GB002947 Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cy 22, GB1022, doi:10.​1029/​2007GB002947
go back to reference Moss RH, Edmonds JA, Hibbard KA (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756CrossRef Moss RH, Edmonds JA, Hibbard KA (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756CrossRef
go back to reference Nazeer M (2009) Simulation of maize crop under irrigated and rainfed conditions with CROPWAT model. ARPN J Agric Biol Sci 4(2):68–73 Nazeer M (2009) Simulation of maize crop under irrigated and rainfed conditions with CROPWAT model. ARPN J Agric Biol Sci 4(2):68–73
go back to reference Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072CrossRef Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072CrossRef
go back to reference Piao SL, Ciais P, Huang Y, Shen ZH, Peng SS, Li JS, Zhou LP, Liu HY, Ma YC, Ding YH, Friedlingstein P, Liu CZ, Tan K, Yu YQ, Zhang TY, Fang JY (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51CrossRef Piao SL, Ciais P, Huang Y, Shen ZH, Peng SS, Li JS, Zhou LP, Liu HY, Ma YC, Ding YH, Friedlingstein P, Liu CZ, Tan K, Yu YQ, Zhang TY, Fang JY (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51CrossRef
go back to reference Prăvălie R, Sĭrodoev I, Patriche CV, Bandoc G, Peptenatu D (2014) The analysis of the relationship between climatic water deficit and corn agricultural productivity in the dobroger plateau. Carpathian Journal of Earth and Environmental Sciences 9(4):201–214 Prăvălie R, Sĭrodoev I, Patriche CV, Bandoc G, Peptenatu D (2014) The analysis of the relationship between climatic water deficit and corn agricultural productivity in the dobroger plateau. Carpathian Journal of Earth and Environmental Sciences 9(4):201–214
go back to reference Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:W09405. doi:10.1029/2007WR006331 Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:W09405. doi:10.​1029/​2007WR006331
go back to reference Samper J, Li Y, Pisani B (2015) An evaluation of climate change impacts on groundwater flow in the Plana de La Galera and Tortosa alluvial aquifers (Spain). Environ Earth Sci 73:2595–2608. doi:10.1007/s12665-014-3734-3 CrossRef Samper J, Li Y, Pisani B (2015) An evaluation of climate change impacts on groundwater flow in the Plana de La Galera and Tortosa alluvial aquifers (Spain). Environ Earth Sci 73:2595–2608. doi:10.​1007/​s12665-014-3734-3 CrossRef
go back to reference Shi YL (2008) Study on Reasonable Allocation of Agricultural Resource and Improvement of the Comprehensive Productivity. China Agricultural Press, BeiJing. ISBN 9787109126169 Shi YL (2008) Study on Reasonable Allocation of Agricultural Resource and Improvement of the Comprehensive Productivity. China Agricultural Press, BeiJing. ISBN 9787109126169
go back to reference Siebert S, Döll P, Feick S, Hoogeveen J, and Frenken K (2007) Global Map of Irrigation Areas version 4.0.1. Johann Wolfgang Goethe University, Frankfurt am Main, Germany/Food and Agriculture Organization of the United Nations, Rome Siebert S, Döll P, Feick S, Hoogeveen J, and Frenken K (2007) Global Map of Irrigation Areas version 4.0.1. Johann Wolfgang Goethe University, Frankfurt am Main, Germany/Food and Agriculture Organization of the United Nations, Rome
go back to reference Stancalie G, Marica A, Toulios L (2010) Using earth observation data and CROPWAT model to estimate the actual crop evapotranspiration. Phys Chem Earth 35(1–2):25–30CrossRef Stancalie G, Marica A, Toulios L (2010) Using earth observation data and CROPWAT model to estimate the actual crop evapotranspiration. Phys Chem Earth 35(1–2):25–30CrossRef
go back to reference Thevs N, Ovezmuradov K, Zanjani LV, Zerbe S (2015) Water consumption of agriculture and natural ecosystems at the Amu Darya in Lebap Province, Turkmenistan. Environ Earth Sci 73:731–741CrossRef Thevs N, Ovezmuradov K, Zanjani LV, Zerbe S (2015) Water consumption of agriculture and natural ecosystems at the Amu Darya in Lebap Province, Turkmenistan. Environ Earth Sci 73:731–741CrossRef
go back to reference Thomson AM, Izaurralde RC, Rosenberg NJ, He X (2006) Climate change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China. Agr Ecosyst Environ 114(2–4):195CrossRef Thomson AM, Izaurralde RC, Rosenberg NJ, He X (2006) Climate change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China. Agr Ecosyst Environ 114(2–4):195CrossRef
go back to reference Wang WJ, Feng H (2012) Water requirement and irrigation systems of winter wheat: CROPWAT-DSSAT model solution in Guanzhong District, Chinese. J Eco-Agric 20(6):795–802CrossRef Wang WJ, Feng H (2012) Water requirement and irrigation systems of winter wheat: CROPWAT-DSSAT model solution in Guanzhong District, Chinese. J Eco-Agric 20(6):795–802CrossRef
go back to reference Wang HX, Zhang L, Dawas WR, Liu CM (2001) Improving water use efficiency of irrigated crops in the North China Plain-measurements and modeling. Agric Water Manage 48(2):151–167CrossRef Wang HX, Zhang L, Dawas WR, Liu CM (2001) Improving water use efficiency of irrigated crops in the North China Plain-measurements and modeling. Agric Water Manage 48(2):151–167CrossRef
go back to reference Wang J, Wang EL, Feng LP, Yin H, Yu WD (2013) Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Res 144:135–144CrossRef Wang J, Wang EL, Feng LP, Yin H, Yu WD (2013) Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Res 144:135–144CrossRef
go back to reference Xia J, Qiu B, Li YY (2012) Water resources vulnerability and adaptive management in the Huang, Huai and Hai river basins of China. Water Int 37:523–536CrossRef Xia J, Qiu B, Li YY (2012) Water resources vulnerability and adaptive management in the Huang, Huai and Hai river basins of China. Water Int 37:523–536CrossRef
go back to reference Xiao DP, Tao FL (2014) Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. Eur J Agron 52:112–122CrossRef Xiao DP, Tao FL (2014) Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. Eur J Agron 52:112–122CrossRef
go back to reference Zang C, Liu J, van der Velde M, Fraxner F (2012) Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in northwest China. Hydrol Earth Syst Sci 16(8):2859–2870CrossRef Zang C, Liu J, van der Velde M, Fraxner F (2012) Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in northwest China. Hydrol Earth Syst Sci 16(8):2859–2870CrossRef
go back to reference Zang C, Liu J, Jiang L, Gerten D (2013) Impacts of human activities and climate variability on green and blue water flows in the Heihe river basin in Northwest China. Hydrol Earth Syst Sci Discuss 10:9477–9504CrossRef Zang C, Liu J, Jiang L, Gerten D (2013) Impacts of human activities and climate variability on green and blue water flows in the Heihe river basin in Northwest China. Hydrol Earth Syst Sci Discuss 10:9477–9504CrossRef
go back to reference Zhang H, Wang X, You M, Liu C (1999) Water-yield relations and water-use efficiency of winter wheat in the North China Plain. Irrig Sci 19:37–45CrossRef Zhang H, Wang X, You M, Liu C (1999) Water-yield relations and water-use efficiency of winter wheat in the North China Plain. Irrig Sci 19:37–45CrossRef
go back to reference Zhang GH, Lian YL, Liu CH, Yan MJ, Wang JZ (2011) Situation and Origin of Water Resources in Short Supply in North China Plain. J Earth Sci Environ 33(2):172–176 (in Chinese) Zhang GH, Lian YL, Liu CH, Yan MJ, Wang JZ (2011) Situation and Origin of Water Resources in Short Supply in North China Plain. J Earth Sci Environ 33(2):172–176 (in Chinese)
go back to reference Zhang WB, Zha XC, Li JX, Liang W, Ma YG, Fan DM, Li S (2014) Spatiotemporal Change of Blue Water and Green Water Resources in the Headwater of Yellow River Basin, China. Water Resour Manage 28:4715–4732CrossRef Zhang WB, Zha XC, Li JX, Liang W, Ma YG, Fan DM, Li S (2014) Spatiotemporal Change of Blue Water and Green Water Resources in the Headwater of Yellow River Basin, China. Water Resour Manage 28:4715–4732CrossRef
go back to reference Zhao XN, Hu KL, Stahr K (2013) Simulation of SOC content and storage under different irrigation, fertilization and tillage conditions using EPIC model in the North China Plain. Soil Tillage Res 130:128–135CrossRef Zhao XN, Hu KL, Stahr K (2013) Simulation of SOC content and storage under different irrigation, fertilization and tillage conditions using EPIC model in the North China Plain. Soil Tillage Res 130:128–135CrossRef
go back to reference Zhou H, Zhang X, Xu H, Ling H, Yu P (2012) Influence of climate change and human activities on Tarim River runoffs in China over the past half century. Environ Earth Sci 67(1):231–241CrossRef Zhou H, Zhang X, Xu H, Ling H, Yu P (2012) Influence of climate change and human activities on Tarim River runoffs in China over the past half century. Environ Earth Sci 67(1):231–241CrossRef
go back to reference Zinyengere N, Crespo O, Hachigonta S, Tadross M (2014) Local impacts of climate change and agronomic practices on dry land crops in Southern Africa. Agr Ecosyst Environ 197:1–10CrossRef Zinyengere N, Crespo O, Hachigonta S, Tadross M (2014) Local impacts of climate change and agronomic practices on dry land crops in Southern Africa. Agr Ecosyst Environ 197:1–10CrossRef
Metadata
Title
Modeling water requirements of major crops and their responses to climate change in the North China Plain
Publication date
01-08-2015
Published in
Environmental Earth Sciences / Issue 4/2015
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-015-4400-0

Other articles of this Issue 4/2015

Environmental Earth Sciences 4/2015 Go to the issue