Skip to main content
Top
Published in: Environmental Earth Sciences 2/2012

01-09-2012 | Special Issue

Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model

Authors: Marco De Lucia, Sebastian Bauer, Christof Beyer, Michael Kühn, Thomas Nowak, Dieter Pudlo, Viktor Reitenbach, Susanne Stadler

Published in: Environmental Earth Sciences | Issue 2/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modelling fluid–rock interactions induced by CO2 is a key issue when evaluating the technical feasibility and long-term safety assessment of CO2 storage projects in deep formations. The German R&D programme CLEAN (CO2 Large-Scale Enhanced Gas Recovery in the Altmark Natural Gas Field) investigated the almost depleted onshore gas reservoir located in the Rotliegend sandstone at over 3,000-m depth. The high salinity of the formation fluids and the elevated temperature in the reservoir exceed the validity limits of commonly available thermodynamic databases needed for predictive geochemical modelling. In particular, it is shown that the activity model of Pitzer has to be applied, even if necessary input data for this model are incomplete or inconsistent for complex systems and for the considered temperatures. Simulations based on Debye-Hückel activity model lead to severe, systematic discrepancies already in the simple proposed reference case where experimental data could be used for comparison. A simplified geochemical model, consistent with the average measured composition of formation fluids and the prevailing mineralogical assemblage of the host rock, identifies the mineral phases most likely to be considered at equilibrium with the formation fluid. The simulated reactions due to CO2 injection, under the hypothesis of local thermodynamical equilibrium, result in a moderate reactivity of the system, with the dissolution of anhydrite cementation and haematite being the most relevant expected mineral reactions. This is compensated, at equilibrium, by the precipitation of new carbonates, like calcite and siderite, for an overall very small loss of porous space. The simulated rather small effect of mineral alteration is also due to the scarce amount of water available for reactions in the reservoir. The results of the model are qualitatively in line with observations from batch experiments and from natural analogues.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The ionic strength constitutes a measure of non-ideality of a concentrated solution, and is defined as: \(I=\frac{1}{2} \sum_i z_i^2 C_i ; C\) is the concentration in moles per kg water and z the specific charge of the i-th solute species.
 
Literature
go back to reference Accornero M, Marini L (2009) Empirical prediction of the Pitzer’s interaction parameters for cationic Al species with both SiO2(aq) and CO2(aq): implications for the geochemical modelling of very saline solutions. Applied Geochemistry 24(5):747−759CrossRef Accornero M, Marini L (2009) Empirical prediction of the Pitzer’s interaction parameters for cationic Al species with both SiO2(aq) and CO2(aq): implications for the geochemical modelling of very saline solutions. Applied Geochemistry 24(5):747−759CrossRef
go back to reference Audigane P, Lions J, Gaus I, Robelin C, Durst P, Van der Meer B, Geel K, Oldenburg C, Xu T (2009) Geochemical modeling of CO2 injection into a methane gas reservoir at the K12-B field, North Sea. In: Grobe M, Pashin JC, Dodge RL (eds) Carbon dioxide sequestration in geological media? State of the science. AAPG Studies in Geology 59. American Association of Petroleum, USA, pp 499–519 Audigane P, Lions J, Gaus I, Robelin C, Durst P, Van der Meer B, Geel K, Oldenburg C, Xu T (2009) Geochemical modeling of CO2 injection into a methane gas reservoir at the K12-B field, North Sea. In: Grobe M, Pashin JC, Dodge RL (eds) Carbon dioxide sequestration in geological media? State of the science. AAPG Studies in Geology 59. American Association of Petroleum, USA, pp 499–519
go back to reference Benbow S, Metcalfe R, Wilson J (2008) Pitzer databases for use in thermodynamic modelling. Quintessa Technical Memorandum (unpublished) Benbow S, Metcalfe R, Wilson J (2008) Pitzer databases for use in thermodynamic modelling. Quintessa Technical Memorandum (unpublished)
go back to reference Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012) Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulations. Environ Earth Sci. doi:10.1007/s12665-012-1684-1 Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012) Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulations. Environ Earth Sci. doi:10.​1007/​s12665-012-1684-1
go back to reference Christov C, Dickson AG, Møller N (2007) Thermodynamic modeling of aqueous aluminum chemistry and solid-liquid equilibria to high solution concentration and temperature. I. the acidic H–Al–Na–K–Cl–H2O system from 0 to 100° C. J Solut Chem 36(11):1495–1523CrossRef Christov C, Dickson AG, Møller N (2007) Thermodynamic modeling of aqueous aluminum chemistry and solid-liquid equilibria to high solution concentration and temperature. I. the acidic H–Al–Na–K–Cl–H2O system from 0 to 100° C. J Solut Chem 36(11):1495–1523CrossRef
go back to reference Davies C (1962) Ion association. Butterworth, Washington DC Davies C (1962) Ion association. Butterworth, Washington DC
go back to reference Dethlefsen F, Haase C, Ebert M, Dahmke A (2011) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65(4):1105–1117CrossRef Dethlefsen F, Haase C, Ebert M, Dahmke A (2011) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65(4):1105–1117CrossRef
go back to reference Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193(3–4):257–271CrossRef Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193(3–4):257–271CrossRef
go back to reference Duan Z, Sun R, Zhu C, Chou I (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl−, and SO 4 2− . Mar Chem 98(2–4):131–139CrossRef Duan Z, Sun R, Zhu C, Chou I (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl, and SO 4 2− . Mar Chem 98(2–4):131–139CrossRef
go back to reference Duan Z, Møller N, Weare JH (1992) An equation of state for the Ch4-CO2-H2O system: I. pure systems from 0 to 1000 °C and 0 to 8000 bar. Geochim Cosmochim Acta 56:2605–2617CrossRef Duan Z, Møller N, Weare JH (1992) An equation of state for the Ch4-CO2-H2O system: I. pure systems from 0 to 1000 °C and 0 to 8000 bar. Geochim Cosmochim Acta 56:2605–2617CrossRef
go back to reference Gailhanou H, van Miltenburg J, Rogez J, Olives J, Amouric M, Gaucher E, Blanc P (2007) Thermodynamic properties of anhydrous smectite mx-80, illite imt-2 and mixed-layer illite smectite iscz-1 as determined by calorimetric methods. part I: Heat capacities, heat contents and entropies. Geochim Cosmochim Acta 71(22):5463–5473CrossRef Gailhanou H, van Miltenburg J, Rogez J, Olives J, Amouric M, Gaucher E, Blanc P (2007) Thermodynamic properties of anhydrous smectite mx-80, illite imt-2 and mixed-layer illite smectite iscz-1 as determined by calorimetric methods. part I: Heat capacities, heat contents and entropies. Geochim Cosmochim Acta 71(22):5463–5473CrossRef
go back to reference Gaupp R (1996) Diagenesis types and their application in diagenesis mapping. Rev Mineral Geochem 11–12:1183–1199 Gaupp R (1996) Diagenesis types and their application in diagenesis mapping. Rev Mineral Geochem 11–12:1183–1199
go back to reference Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks (review article). Int J Greenh Gas Control 4(1):73–89CrossRef Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks (review article). Int J Greenh Gas Control 4(1):73–89CrossRef
go back to reference Gaus I, Azaroual M, Czernichowski-Lauriol I (2005) Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol 217(3–4):319–337CrossRef Gaus I, Azaroual M, Czernichowski-Lauriol I (2005) Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol 217(3–4):319–337CrossRef
go back to reference Gottschalk M (2007) Equations of state for complex fluids. Rev Mineral Geochem 65:49–97CrossRef Gottschalk M (2007) Equations of state for complex fluids. Rev Mineral Geochem 65:49–97CrossRef
go back to reference Harvie C, Møller N, Weare J (1984) The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim Cosmochim Acta 48(4):723–751CrossRef Harvie C, Møller N, Weare J (1984) The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim Cosmochim Acta 48(4):723–751CrossRef
go back to reference Johnson JW, Oelkers E, Helgeson H (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comp Geosci 19:899–947CrossRef Johnson JW, Oelkers E, Helgeson H (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comp Geosci 19:899–947CrossRef
go back to reference Kühn M, Förster A, Großmann J, Meyer R, Reinicke K, Schäfer D, Wendel H (2011) CLEAN: Preparing for a CO2-based enhanced gas recovery in a depleted gas field in Germany. Energy Procedia 4:5520–5526CrossRef Kühn M, Förster A, Großmann J, Meyer R, Reinicke K, Schäfer D, Wendel H (2011) CLEAN: Preparing for a CO2-based enhanced gas recovery in a depleted gas field in Germany. Energy Procedia 4:5520–5526CrossRef
go back to reference Kühn M, Tesmer M, Pilz P, Meyer R, Reinicke K, Förster A, Kolditz O, Schäfer D, Partners C (2012): CLEAN: CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany): project overview. Environ Earth Sci. doi:10.1007/s12665-012-1714-z Kühn M, Tesmer M, Pilz P, Meyer R, Reinicke K, Förster A, Kolditz O, Schäfer D, Partners C (2012): CLEAN: CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany): project overview. Environ Earth Sci. doi:10.​1007/​s12665-012-1714-z
go back to reference Lüders V, Plessen B, Romer R, Weise S, Banks D, Hoth P, Dulski P, Schettler G (2010) Chemistry and isotopic composition of Rotliegend and Upper Carboniferous formation waters from the North German Basin. Chem Geol 276:198–208CrossRef Lüders V, Plessen B, Romer R, Weise S, Banks D, Hoth P, Dulski P, Schettler G (2010) Chemistry and isotopic composition of Rotliegend and Upper Carboniferous formation waters from the North German Basin. Chem Geol 276:198–208CrossRef
go back to reference Marini L (2007) Geological sequestration of carbon dioxide: thermodynamics, kinetics and reaction path modelling. Elsevier, Oxford Marini L (2007) Geological sequestration of carbon dioxide: thermodynamics, kinetics and reaction path modelling. Elsevier, Oxford
go back to reference Merkel B, Planer-Friedrich B, Nordstrom D (2005) Groundwater geochemistry. Springer, Berlin Merkel B, Planer-Friedrich B, Nordstrom D (2005) Groundwater geochemistry. Springer, Berlin
go back to reference Moog H, Mönig H (2010) Erstellung von Parameterdateien für die Verwendung mit Chemapp und Phreeqc (BGR project 45-4500046190). Technical Report GRS, Braunschweig, Germany Moog H, Mönig H (2010) Erstellung von Parameterdateien für die Verwendung mit Chemapp und Phreeqc (BGR project 45-4500046190). Technical Report GRS, Braunschweig, Germany
go back to reference Parkhurst D, Appelo C (1999) Users guide to Phreeqc (version 2). Technical Report, U.S. Geological Survey Parkhurst D, Appelo C (1999) Users guide to Phreeqc (version 2). Technical Report, U.S. Geological Survey
go back to reference Peterson S, Hack K (2007) The thermochemistry library Chemapp and its applications. Int J Mater Res 98:268–277 Peterson S, Hack K (2007) The thermochemistry library Chemapp and its applications. Int J Mater Res 98:268–277
go back to reference Pitzer K (1973) Thermodynamics of electrolytes. I. theoretical basis and general equations. J Phys Chem B 77(2):268–277CrossRef Pitzer K (1973) Thermodynamics of electrolytes. I. theoretical basis and general equations. J Phys Chem B 77(2):268–277CrossRef
go back to reference Pudlo D, Reitenbach V, Albrecht D, Ganzer L, Gernert U, Wienand J, Kohlhepp B, Gaupp R (2012) The impact of diagenetic fluid–rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, Central Germany). Environ Earth Sci. doi:10.1007/s12665-012-1723-y Pudlo D, Reitenbach V, Albrecht D, Ganzer L, Gernert U, Wienand J, Kohlhepp B, Gaupp R (2012) The impact of diagenetic fluid–rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, Central Germany). Environ Earth Sci. doi:10.​1007/​s12665-012-1723-y
go back to reference Regnault O, Lagneau V, Schneider H (2009) Experimental measurement of portlandite carbonation kinetics with supercritical CO2. Chem Geol 265:113–121CrossRef Regnault O, Lagneau V, Schneider H (2009) Experimental measurement of portlandite carbonation kinetics with supercritical CO2. Chem Geol 265:113–121CrossRef
go back to reference Rempel K, Liebscher A, Heinrich W, Schettler G (2011) An experimental investigation of trace element dissolution in carbon dioxide: Applications to the geological storage of CO2. Chem Geol 289(3–4):224–234CrossRef Rempel K, Liebscher A, Heinrich W, Schettler G (2011) An experimental investigation of trace element dissolution in carbon dioxide: Applications to the geological storage of CO2. Chem Geol 289(3–4):224–234CrossRef
go back to reference Rumpf B, Nicolaisen H, Ocal C, Maurer G (1994) Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation. J Sol Chem 23:431–448CrossRef Rumpf B, Nicolaisen H, Ocal C, Maurer G (1994) Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation. J Sol Chem 23:431–448CrossRef
go back to reference Spycher N, Pruess K, Ennis-King J (2003) CO2 − H2O mixtures in the geological sequestration of CO2. I: assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochim Cosmochim Acta 67:3015–3031CrossRef Spycher N, Pruess K, Ennis-King J (2003) CO2 − H2O mixtures in the geological sequestration of CO2. I: assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochim Cosmochim Acta 67:3015–3031CrossRef
go back to reference Spycher N, Pruess K (2005) CO2 − H2O mixtures in the geological sequestration of CO2. II: partitioning in chloride brines at 12–100 °C and up to 600 bar. Geochim Cosmochim Acta 69:3309–3320CrossRef Spycher N, Pruess K (2005) CO2 − H2O mixtures in the geological sequestration of CO2. II: partitioning in chloride brines at 12–100 °C and up to 600 bar. Geochim Cosmochim Acta 69:3309–3320CrossRef
go back to reference Truesdell A, Jones B (1974) Wateq, a computer program for calculating chemical equilibria of natural waters. J Res Music Educ 2:233–274 Truesdell A, Jones B (1974) Wateq, a computer program for calculating chemical equilibria of natural waters. J Res Music Educ 2:233–274
go back to reference Wigand M, Carey JW, Schütt H, Spangenberg E, Erzinger J (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Appl Geochem 23:2735–2745CrossRef Wigand M, Carey JW, Schütt H, Spangenberg E, Erzinger J (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Appl Geochem 23:2735–2745CrossRef
go back to reference Wilkinson M, Haszeldine R, Fallick A, Odling N, Stoker S, Gatliff R (2009) CO2-mineral reaction in a natural analogue for CO2 storage-implications for modeling. J Sediment Res 79:486–494CrossRef Wilkinson M, Haszeldine R, Fallick A, Odling N, Stoker S, Gatliff R (2009) CO2-mineral reaction in a natural analogue for CO2 storage-implications for modeling. J Sediment Res 79:486–494CrossRef
go back to reference Wolery T (1992) Eq3/6, a software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0) ucrl-ma-110662. Technical Report, Lawrence Livermore National Laboratory, Livermore Wolery T (1992) Eq3/6, a software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0) ucrl-ma-110662. Technical Report, Lawrence Livermore National Laboratory, Livermore
go back to reference Xu T, Sonnenthal EL, Spycher N, Pruess K (2006) TOUGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. Comput Geosci 32:145–165CrossRef Xu T, Sonnenthal EL, Spycher N, Pruess K (2006) TOUGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. Comput Geosci 32:145–165CrossRef
go back to reference Xu T, Spycher N, Sonnenthal EL, Zhang G, Zheng L, Pruess K (2011) TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput Geosci 37:763–774CrossRef Xu T, Spycher N, Sonnenthal EL, Zhang G, Zheng L, Pruess K (2011) TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput Geosci 37:763–774CrossRef
go back to reference Zhang G, Spycher N, Sonnenthal E, Steefel C, Xu T (2008) Modeling reactive multiphase flow and transport of concentrated aqueous solutions. Nucl Technol 164:180–195 Zhang G, Spycher N, Sonnenthal E, Steefel C, Xu T (2008) Modeling reactive multiphase flow and transport of concentrated aqueous solutions. Nucl Technol 164:180–195
go back to reference Ziegler K (2006) Clay minerals of the permian Rotliegend group in the North Sea and adjacent areas. Clay Miner 41:355–393CrossRef Ziegler K (2006) Clay minerals of the permian Rotliegend group in the North Sea and adjacent areas. Clay Miner 41:355–393CrossRef
Metadata
Title
Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model
Authors
Marco De Lucia
Sebastian Bauer
Christof Beyer
Michael Kühn
Thomas Nowak
Dieter Pudlo
Viktor Reitenbach
Susanne Stadler
Publication date
01-09-2012
Publisher
Springer-Verlag
Published in
Environmental Earth Sciences / Issue 2/2012
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-012-1725-9

Other articles of this Issue 2/2012

Environmental Earth Sciences 2/2012 Go to the issue