Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 14/2021

01-12-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Modelling of Grain Structure in Polycrystalline Materials Using Voronoi Diagrams for Welding Applications

Author: Won-Ik Cho

Published in: Physics of Metals and Metallography | Issue 14/2021

Login to get access
share
SHARE

Abstract

Voronoi diagram models were applied to calculate grain structure using randomly distributed nuclei in 2 dimensions. The taxicab distance which is a non-Euclidean distance was used because its circle (diamond shape in 2D) resembles the envelope of dendritic growth for materials with BCC and FCC crystal systems. The grain geometry calculated based on the taxicab distance showed, however, an unrealistic, somewhat regular structure. The taxicab Voronoi diagram had to be modified, and different crystallographic orientations of grains were additionally considered. Each grain assumed to have a random crystallographic orientation, and the taxicab distance was calculated in the rotated axis system. A rotated taxicab Voronoi diagram showed a more realistic grain geometry for the materials, and it seems to be applicable for welding applications.
Appendix
Available only for authorised users
Literature
1.
go back to reference S. Kou, Welding Metallurgy, 2 ed. (Wiley, Hoboken, NJ, 2003). S. Kou, Welding Metallurgy, 2 ed. (Wiley, Hoboken, NJ, 2003).
2.
go back to reference A. S. Kudryavtsev, K. A. Okhapkin, M. S. Mikhailov, V. S. Skutin, G. E. Zubova, and B. V. Fedotov, “Analysis of factors responsible for the accelerated creep rupture of 12% Cr martensitic steel weld joints,” Phys. Met. Metallogr. 117, 602–610 (2016). CrossRef A. S. Kudryavtsev, K. A. Okhapkin, M. S. Mikhailov, V. S. Skutin, G. E. Zubova, and B. V. Fedotov, “Analysis of factors responsible for the accelerated creep rupture of 12% Cr martensitic steel weld joints,” Phys. Met. Metallogr. 117, 602–610 (2016). CrossRef
3.
go back to reference V. N. Urtsev, V. L. Kornilov, A. V. Shmakov, M. L. Krasnov, P. A. Stekanov, S. I. Platov, E. D. Mokshin, N. V. Urtsev, V. M. Schastlivtsev, I. K. Razumov, and Yu. N. Gornostyrev, “Formation of the structural state of a high-strength low-alloy steel upon hot rolling and controlled cooling,” Phys. Met. Metallogr. 120, 1233–1241 (2019). CrossRef V. N. Urtsev, V. L. Kornilov, A. V. Shmakov, M. L. Krasnov, P. A. Stekanov, S. I. Platov, E. D. Mokshin, N. V. Urtsev, V. M. Schastlivtsev, I. K. Razumov, and Yu. N. Gornostyrev, “Formation of the structural state of a high-strength low-alloy steel upon hot rolling and controlled cooling,” Phys. Met. Metallogr. 120, 1233–1241 (2019). CrossRef
4.
go back to reference T. Falkenreck, A. Kromm, and T. Böllinghaus, “Investigation of physically simulated weld HAZ and CCT diagram of HSLA armour steel,” Weld. World 62, 47–54 (2018). CrossRef T. Falkenreck, A. Kromm, and T. Böllinghaus, “Investigation of physically simulated weld HAZ and CCT diagram of HSLA armour steel,” Weld. World 62, 47–54 (2018). CrossRef
5.
go back to reference J. A. Warren and W. J. Boettinger, “Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method,” Acta. Metall. Mater. 43, 689–703 (1995). CrossRef J. A. Warren and W. J. Boettinger, “Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method,” Acta. Metall. Mater. 43, 689–703 (1995). CrossRef
6.
go back to reference M. F. Zhu and C. P. Hong, “A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys,” ISIJ Int. 41, 436–445 (2001). CrossRef M. F. Zhu and C. P. Hong, “A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys,” ISIJ Int. 41, 436–445 (2001). CrossRef
7.
go back to reference W. Tan, N. S. Bailey, and Y. C. Shin, “A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys,” Comput. Mater. Sci. 50, 2573–2585 (2011). CrossRef W. Tan, N. S. Bailey, and Y. C. Shin, “A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys,” Comput. Mater. Sci. 50, 2573–2585 (2011). CrossRef
8.
go back to reference V. Pavlyk and U. Dilthey, “Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modeling,” Model. Simul. Mater. Sci. Eng. 12, S33–S45 (2004). CrossRef V. Pavlyk and U. Dilthey, “Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modeling,” Model. Simul. Mater. Sci. Eng. 12, S33–S45 (2004). CrossRef
9.
go back to reference H. Yin and S. D. Felicelli, “Dendrite growth simulation during solidification in the LENS process,” Acta Mater. 58, 1455–1465 (2010). CrossRef H. Yin and S. D. Felicelli, “Dendrite growth simulation during solidification in the LENS process,” Acta Mater. 58, 1455–1465 (2010). CrossRef
10.
go back to reference W. Tan, N. S. Bailey, and Y. C. Shin, “Numerical modeling of transport phenomena and dendritic growth in laser spot conduction welding of 304 stainless steel,” J. Manuf. Sci. Eng. 134, 041010 (2012). W. Tan, N. S. Bailey, and Y. C. Shin, “Numerical modeling of transport phenomena and dendritic growth in laser spot conduction welding of 304 stainless steel,” J. Manuf. Sci. Eng. 134, 041010 (2012).
11.
go back to reference S. Geng, P. Jiang, Y. Ai, R. Chen, L. Cao, C. Han, W. Liu, and Y. Liu, “Cellular automaton modeling for dendritic growth during laser beam welding solidification process,” J. Laser Appl. 30, 032406 (2018). CrossRef S. Geng, P. Jiang, Y. Ai, R. Chen, L. Cao, C. Han, W. Liu, and Y. Liu, “Cellular automaton modeling for dendritic growth during laser beam welding solidification process,” J. Laser Appl. 30, 032406 (2018). CrossRef
12.
go back to reference P. S. Sahni, G. S. Grest, M. P. Anderson, and D. J. Srolovitz, “Kinetics of the Q-state Potts model in two dimensions,” Phys. Rev. Lett. 50, 263–266 (1983). CrossRef P. S. Sahni, G. S. Grest, M. P. Anderson, and D. J. Srolovitz, “Kinetics of the Q-state Potts model in two dimensions,” Phys. Rev. Lett. 50, 263–266 (1983). CrossRef
13.
go back to reference M. Rappaz and C.-A. Gandin, “Probabilistic modeling of microstructure formation in solidification processes,” Acta Metall. Mater. 41, 345–360 (1993). CrossRef M. Rappaz and C.-A. Gandin, “Probabilistic modeling of microstructure formation in solidification processes,” Acta Metall. Mater. 41, 345–360 (1993). CrossRef
14.
go back to reference H. L. Wei, J. W. Elmer, and T. DebRoy, “Three-dimensional modeling of grain structure evolution during welding of an aluminum alloy,” Acta. Mater. 126, 413–425 (2017). CrossRef H. L. Wei, J. W. Elmer, and T. DebRoy, “Three-dimensional modeling of grain structure evolution during welding of an aluminum alloy,” Acta. Mater. 126, 413–425 (2017). CrossRef
15.
go back to reference W. Tan and Y. C. Shin, “Multi-scale modeling of solidification and microstructure development in laser keyhole welding process for austenitic stainless steel,” Comput. Mater. Sci. 98, 446–458 (2015). CrossRef W. Tan and Y. C. Shin, “Multi-scale modeling of solidification and microstructure development in laser keyhole welding process for austenitic stainless steel,” Comput. Mater. Sci. 98, 446–458 (2015). CrossRef
16.
go back to reference Y. Zhang and J. Zhang, “Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata,” Addit. Manuf. 28, 750–765 (2019). Y. Zhang and J. Zhang, “Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata,” Addit. Manuf. 28, 750–765 (2019).
17.
go back to reference K. J. Kozaczek, B. G. Petrovic, C. O. Ruud, S. K. Kurtz, and A. R. Mcilree, “Microstructural modeling of grain-boundary stresses in alloy 600,” J. Mater. Sci. 30, 2390–2400 (1995). CrossRef K. J. Kozaczek, B. G. Petrovic, C. O. Ruud, S. K. Kurtz, and A. R. Mcilree, “Microstructural modeling of grain-boundary stresses in alloy 600,” J. Mater. Sci. 30, 2390–2400 (1995). CrossRef
18.
go back to reference M. Nygårds and P. Gudmundson, “Three-dimensional periodic Voronoi grain models and micromechanical FE-simulations of a two-phase steel,” Comput. Mater. Sci. 24, 513–519 (2002). CrossRef M. Nygårds and P. Gudmundson, “Three-dimensional periodic Voronoi grain models and micromechanical FE-simulations of a two-phase steel,” Comput. Mater. Sci. 24, 513–519 (2002). CrossRef
19.
go back to reference V. García-García, I. Mejía, and F. Reyes-Calderón, “Two-dimensional Monte Carlo–Voronoi simulation of grain growth and nucleation in the heat affected zone of TWIP-Ti welds,” Materialia 5, 100223 (2019). CrossRef V. García-García, I. Mejía, and F. Reyes-Calderón, “Two-dimensional Monte Carlo–Voronoi simulation of grain growth and nucleation in the heat affected zone of TWIP-Ti welds,” Materialia 5, 100223 (2019). CrossRef
20.
go back to reference J. Cho, “Voronoi diagram and microstructure of weldment,” J. Mech. Sci. Technol. 29, 371–374 (2015). CrossRef J. Cho, “Voronoi diagram and microstructure of weldment,” J. Mech. Sci. Technol. 29, 371–374 (2015). CrossRef
21.
go back to reference S. Chen, PhD Thesis (ParisTech, Paris, 2014). S. Chen, PhD Thesis (ParisTech, Paris, 2014).
22.
go back to reference E. F. Krause, Taxicab Geometry: An Adventure in Non-Euclidean Geometry (Dover, New York, 1987). E. F. Krause, Taxicab Geometry: An Adventure in Non-Euclidean Geometry (Dover, New York, 1987).
23.
go back to reference Y. Natsume and K. Ohsasa, “Prediction of casting structure in aluminum-base multi-component alloys using heterogeneous nucleation parameter,” ISIJ Int. 46, 896–902 (2006). CrossRef Y. Natsume and K. Ohsasa, “Prediction of casting structure in aluminum-base multi-component alloys using heterogeneous nucleation parameter,” ISIJ Int. 46, 896–902 (2006). CrossRef
24.
go back to reference W.-I. Cho and P. Woizeschke, “Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal,” Int. J. Heat Mass. Trans. 152, 119528 (2020). CrossRef W.-I. Cho and P. Woizeschke, “Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal,” Int. J. Heat Mass. Trans. 152, 119528 (2020). CrossRef
25.
go back to reference V. Villaret, F. Deschaux-Beaume, and C. Bordreuil, “A solidification model for the columnar to equiaxed transition in welding of a Cr–Mo ferritic stainless steel with Ti as inoculant,” J. Mater. Process. Technol. 233, 115–124 (2016). CrossRef V. Villaret, F. Deschaux-Beaume, and C. Bordreuil, “A solidification model for the columnar to equiaxed transition in welding of a Cr–Mo ferritic stainless steel with Ti as inoculant,” J. Mater. Process. Technol. 233, 115–124 (2016). CrossRef
26.
go back to reference A. Chiocca, F. Soulié, F. Deschaux-Beaume, and C. Bordreuil, “Study of the effect of growth kinetic and nucleation law on grain structure simulation during gas tungsten arc welding of Cu–Ni plate,” Weld. World 63, 887–901 (2019). CrossRef A. Chiocca, F. Soulié, F. Deschaux-Beaume, and C. Bordreuil, “Study of the effect of growth kinetic and nucleation law on grain structure simulation during gas tungsten arc welding of Cu–Ni plate,” Weld. World 63, 887–901 (2019). CrossRef
Metadata
Title
Modelling of Grain Structure in Polycrystalline Materials Using Voronoi Diagrams for Welding Applications
Author
Won-Ik Cho
Publication date
01-12-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140258