Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 1/2019

01-12-2018 | Original Article

Modelling of particle size effect on Equivalence Ratio requirement for wood combustion in fixed beds

Authors: K. Upuli C. Perera, Mahinsasa Narayana

Published in: Biomass Conversion and Biorefinery | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A sufficient amount of air is needed for the optimum combustion of fuel. The correct amount of air supply assures optimal flue gas temperature to maximise heat utilisation with fewer pollutants. The quantity of air requirement depends on the fuel type. Equivalence Ratio (ER) requirement has been defined empirically for different fuel types. Wood combustion requires a high degree of excess air requirement compared to other fuels. Data on ER requirement is essential for the industrial operation of wood combustion systems. One of the factors which affect the amount of ER is the size of fuel which has not been given sufficient attention. The effect of particle size on the ER requirement in packed bed combustion of thermally thick wood particles is studied in this research through numerical modelling. Computational fluid dynamics simulations were carried out for the particle sizes of 25 mm, 38 mm, and 63 mm wood particles under air flow velocity of 0.12 ms−1. Simulation results show that the ER value for smaller particle sizes is less than that for the larger particle sizes under the same volumetric air flow rate. CFD simulations were used to decide the optimum ER which maximises the flue gas temperature with minimum possible CO fraction for particle sizes of 25 mm, 38 mm, and 63 mm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arce M, Saavedra Á, Míguez J, Granada E, Cacabelos A (2013) Biomass fuel and combustion conditions selection in a fixed bed combustor. Energies 6(11):5973–5989CrossRef Arce M, Saavedra Á, Míguez J, Granada E, Cacabelos A (2013) Biomass fuel and combustion conditions selection in a fixed bed combustor. Energies 6(11):5973–5989CrossRef
2.
go back to reference Kubler H (1991) Indicators and significance of air supply in the combustion of wood for heat. Wood Fiber Sci 23(2):153–164 Kubler H (1991) Indicators and significance of air supply in the combustion of wood for heat. Wood Fiber Sci 23(2):153–164
3.
go back to reference Hughes AD (1976) Fuelling around the boiler room. For Prod J 26:33–38 Hughes AD (1976) Fuelling around the boiler room. For Prod J 26:33–38
4.
go back to reference Yin C, Rosendahl L a, Kær SK (2008) Grate-firing of biomass for heat and power production. Prog Energy Combust Sci 34(6):725–754CrossRef Yin C, Rosendahl L a, Kær SK (2008) Grate-firing of biomass for heat and power production. Prog Energy Combust Sci 34(6):725–754CrossRef
5.
go back to reference Ryu C, Bin Yang Y, Khor A, Yates NE, Sharifi VN, Swithenbank J (2006) Effect of fuel properties on biomass combustion: part I. experiments - fuel type, equivalence ratio and particle size. Fuel 85(7–8):1039–1046CrossRef Ryu C, Bin Yang Y, Khor A, Yates NE, Sharifi VN, Swithenbank J (2006) Effect of fuel properties on biomass combustion: part I. experiments - fuel type, equivalence ratio and particle size. Fuel 85(7–8):1039–1046CrossRef
6.
go back to reference Yang Y, Ryu C, Khor a, Yates N, Sharifi V, Swithenbank J (2005) Effect of fuel properties on biomass combustion. Part II. Modelling approach—identification of the controlling factors. Fuel 84(16):2116–2130CrossRef Yang Y, Ryu C, Khor a, Yates N, Sharifi V, Swithenbank J (2005) Effect of fuel properties on biomass combustion. Part II. Modelling approach—identification of the controlling factors. Fuel 84(16):2116–2130CrossRef
7.
go back to reference Yang YB, Sharifi VN, Swithenbank J (2005) Numerical simulation of the burning characteristics of thermally-thick biomass fuels in packed-beds. Process Saf Environ Prot 83(6):549–558CrossRef Yang YB, Sharifi VN, Swithenbank J (2005) Numerical simulation of the burning characteristics of thermally-thick biomass fuels in packed-beds. Process Saf Environ Prot 83(6):549–558CrossRef
8.
go back to reference Pérez JF, Melgar A, Tinaut FV (2014) Modeling of fixed bed downdraft biomass gasification : application on lab-scale and industrial reactors. no April 2013, pp 319–338 Pérez JF, Melgar A, Tinaut FV (2014) Modeling of fixed bed downdraft biomass gasification : application on lab-scale and industrial reactors. no April 2013, pp 319–338
9.
go back to reference Suranani S, Goli VR (2012) Fuel particle size effect on performance of fluidized bed combustor firing ground nutshells. Int J Chem Eng Appl 3(2):147–151 Suranani S, Goli VR (2012) Fuel particle size effect on performance of fluidized bed combustor firing ground nutshells. Int J Chem Eng Appl 3(2):147–151
10.
go back to reference Bryden KM, Ragland KW (1996) Numerical modeling of a deep, fixed bed combustor. Energy Fuel 10(2):269–275CrossRef Bryden KM, Ragland KW (1996) Numerical modeling of a deep, fixed bed combustor. Energy Fuel 10(2):269–275CrossRef
11.
go back to reference Mehrabian R, Shiehnejadhesar A, Scharler R, Obernberger I (2014) Multi-physics modelling of packed bed biomass combustion. Fuel 122:164–178CrossRef Mehrabian R, Shiehnejadhesar A, Scharler R, Obernberger I (2014) Multi-physics modelling of packed bed biomass combustion. Fuel 122:164–178CrossRef
12.
go back to reference Schulze S, Nikrityuk P, Compart F, Richter A, Meyer B (2017) Particle-resolved numerical study of char conversion processes in packed beds. Fuel 207:655–662CrossRef Schulze S, Nikrityuk P, Compart F, Richter A, Meyer B (2017) Particle-resolved numerical study of char conversion processes in packed beds. Fuel 207:655–662CrossRef
13.
go back to reference Scharler R (2000) Ingwald Obernberger, Numerical Modelling of Biomass Grate Furnaces. In European Conference on Industrial Furnaces and Boilers, vol 1(3), pp 550–556 Scharler R (2000) Ingwald Obernberger, Numerical Modelling of Biomass Grate Furnaces. In European Conference on Industrial Furnaces and Boilers, vol 1(3), pp 550–556
14.
go back to reference Hermansson S, Thunman H (2011) CFD modelling of bed shrinkage and channelling in fixed-bed combustion. Combust Flame 158(5):988–999CrossRef Hermansson S, Thunman H (2011) CFD modelling of bed shrinkage and channelling in fixed-bed combustion. Combust Flame 158(5):988–999CrossRef
15.
go back to reference Hallett W, Green B, Machula T, Yang Y (2013) Packed bed combustion of non-uniformly sized char particles. Chem Eng Sci 96:1–9CrossRef Hallett W, Green B, Machula T, Yang Y (2013) Packed bed combustion of non-uniformly sized char particles. Chem Eng Sci 96:1–9CrossRef
16.
go back to reference Mätzing H, Gehrmann H-J, Kolb T, Seifert H (2012) Experimental and numerical investigation of wood particle combustion in fixed bed reactors. Environ Eng Sci 29(10):907–914CrossRef Mätzing H, Gehrmann H-J, Kolb T, Seifert H (2012) Experimental and numerical investigation of wood particle combustion in fixed bed reactors. Environ Eng Sci 29(10):907–914CrossRef
17.
go back to reference Shin D, Choi S (2000) The combustion of simulated waste particles in a fixed bed. Combust Flame 121:167–180CrossRef Shin D, Choi S (2000) The combustion of simulated waste particles in a fixed bed. Combust Flame 121:167–180CrossRef
18.
go back to reference Perera KUC, Narayana M (2017) Finite Volume Analysis of Biomass Particle Pyrolysis. In 2017 Moratuwa Engineering Research Conference (MERCon) F, 2, pp 379–384 Perera KUC, Narayana M (2017) Finite Volume Analysis of Biomass Particle Pyrolysis. In 2017 Moratuwa Engineering Research Conference (MERCon) F, 2, pp 379–384
19.
go back to reference Mehrabian R, Zahirovic S, Scharler R, Obernberger I, Kleditzsch S, Wirtz S, Scherer V, Lu H, Baxter LL (2012) A CFD model for thermal conversion of thermally thick biomass particles. Fuel Process Technol 95:96–108CrossRef Mehrabian R, Zahirovic S, Scharler R, Obernberger I, Kleditzsch S, Wirtz S, Scherer V, Lu H, Baxter LL (2012) A CFD model for thermal conversion of thermally thick biomass particles. Fuel Process Technol 95:96–108CrossRef
20.
go back to reference Kurdyumov V, Fernandez E (1998) Heat transfer from a circular cylinder at low Reynolds numbers. J Heat Transf 120(1):72–75CrossRef Kurdyumov V, Fernandez E (1998) Heat transfer from a circular cylinder at low Reynolds numbers. J Heat Transf 120(1):72–75CrossRef
21.
go back to reference Gunn DJ (1978) Transfer of heat or mass to particles in fixed and fluidised beds. Int J Heat Mass Transf 21(4):467–476CrossRef Gunn DJ (1978) Transfer of heat or mass to particles in fixed and fluidised beds. Int J Heat Mass Transf 21(4):467–476CrossRef
22.
go back to reference Johansson R, Thunman H, Leckner B (2007) Sensitivity analysis of a fixed bed combustion model. Energy Fuel 21(3):1493–1503CrossRef Johansson R, Thunman H, Leckner B (2007) Sensitivity analysis of a fixed bed combustion model. Energy Fuel 21(3):1493–1503CrossRef
23.
go back to reference A. Inc. (2013) ANSYS Fluent Theory Guide. no. November. Southpointe 275, Technology Drive, Canonsburg, PA 15317 A. Inc. (2013) ANSYS Fluent Theory Guide. no. November. Southpointe 275, Technology Drive, Canonsburg, PA 15317
24.
go back to reference Backreedy RI, Jones JM, Ma L, Pourkashanian M, Williams A, Arenillas A, Arias B, Pis JJ, Rubiera F (2005) Prediction of unburned carbon and NOxin a tangentially fired power station using single coals and blends. Fuel 84(17):2196–2203CrossRef Backreedy RI, Jones JM, Ma L, Pourkashanian M, Williams A, Arenillas A, Arias B, Pis JJ, Rubiera F (2005) Prediction of unburned carbon and NOxin a tangentially fired power station using single coals and blends. Fuel 84(17):2196–2203CrossRef
25.
go back to reference Ku X, Li T, Løvås T (2014) Eulerian-lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor. Energy Fuel 28(8):5184–5196CrossRef Ku X, Li T, Løvås T (2014) Eulerian-lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor. Energy Fuel 28(8):5184–5196CrossRef
26.
go back to reference Fernando N, Narayana M, Wickramaarachchi WAMKP (2017) The effects of air velocity, temperature and particle size on low-temperature bed drying of wood chips. Biomass Convers Biorefinery Fernando N, Narayana M, Wickramaarachchi WAMKP (2017) The effects of air velocity, temperature and particle size on low-temperature bed drying of wood chips. Biomass Convers Biorefinery
27.
go back to reference Peters B, Schröder E, Bruch C, Nussbaumer T (2002) Measurements and particle resolved modelling of heat-up and drying of a packed bed. Biomass Bioenergy 23(4):291–306CrossRef Peters B, Schröder E, Bruch C, Nussbaumer T (2002) Measurements and particle resolved modelling of heat-up and drying of a packed bed. Biomass Bioenergy 23(4):291–306CrossRef
28.
go back to reference Grønli MG (1996) A theoretical and experimental study of the thermal degradation of biomass. The Norwegian University of Science and Technology Grønli MG (1996) A theoretical and experimental study of the thermal degradation of biomass. The Norwegian University of Science and Technology
29.
go back to reference Duffy N (2012) Investigation of biomass combustion in grate furnaces using CFD. Ph.D.dissertation, Department of Mechanical and Biomedical Engineering, National University of Ireland, Galway Duffy N (2012) Investigation of biomass combustion in grate furnaces using CFD. Ph.D.dissertation, Department of Mechanical and Biomedical Engineering, National University of Ireland, Galway
30.
go back to reference Sand U, Sandberg J, Larfeldt J, Bel Fdhila R (2008) Numerical prediction of the transport and pyrolysis in the interior and surrounding of dry and wet wood log. Appl Energy 85(12):1208–1224CrossRef Sand U, Sandberg J, Larfeldt J, Bel Fdhila R (2008) Numerical prediction of the transport and pyrolysis in the interior and surrounding of dry and wet wood log. Appl Energy 85(12):1208–1224CrossRef
31.
go back to reference Nachenius RW, Ronsse F, Venderbosch RH, Prins W (2013) Biomass pyrolysis. In Chemical Engineering for Renewables Conversion, 1st edn, vol 42, Elsevier, pp 83–89 Nachenius RW, Ronsse F, Venderbosch RH, Prins W (2013) Biomass pyrolysis. In Chemical Engineering for Renewables Conversion, 1st edn, vol 42, Elsevier, pp 83–89
32.
go back to reference Duffy NTM, Eaton JA (2013) Investigation of factors affecting channelling in fixed-bed solid fuel combustion using CFD. Combust Flame 160(10):2204–2220CrossRef Duffy NTM, Eaton JA (2013) Investigation of factors affecting channelling in fixed-bed solid fuel combustion using CFD. Combust Flame 160(10):2204–2220CrossRef
33.
go back to reference Lu H, Robert W, Peirce G, Ripa B, Baxter LL (2008) Comprehensive study of biomass particle combustion. Energy Fuel 22(4):2826–2839CrossRef Lu H, Robert W, Peirce G, Ripa B, Baxter LL (2008) Comprehensive study of biomass particle combustion. Energy Fuel 22(4):2826–2839CrossRef
34.
go back to reference Wang Y, Yan L (2008) CFD studies on biomass thermochemical conversion. Int J Mol Sci 9(6):1108–1130CrossRef Wang Y, Yan L (2008) CFD studies on biomass thermochemical conversion. Int J Mol Sci 9(6):1108–1130CrossRef
35.
go back to reference Yang YB, Goodfellow J, Sharifi VN, Swithenbank J (2006) Investigation of biomass combustion systems using CFD techniques: a parametric study of packed-bed burning characteristics. Prog Comput Fluid Dyn 6:262–271CrossRef Yang YB, Goodfellow J, Sharifi VN, Swithenbank J (2006) Investigation of biomass combustion systems using CFD techniques: a parametric study of packed-bed burning characteristics. Prog Comput Fluid Dyn 6:262–271CrossRef
36.
go back to reference Van Der Lans RP, Pedersen LT, Jensen A, Glarborg P (2000) Modelling and experiments of straw combustion in a grate furnace. Biomass Bioenergy 19:199–208CrossRef Van Der Lans RP, Pedersen LT, Jensen A, Glarborg P (2000) Modelling and experiments of straw combustion in a grate furnace. Biomass Bioenergy 19:199–208CrossRef
37.
go back to reference Juřena T (2012) Numerical modelling of grate combustion. Vutium Vutbr Cz Juřena T (2012) Numerical modelling of grate combustion. Vutium Vutbr Cz
38.
go back to reference Yang YB, Ryu C, Goodfellow J, Sharifi VN, Swithenbank J (2004) Modelling waste combustion in grate furnaces. Process Saf Environ Prot 82(3):208–222CrossRef Yang YB, Ryu C, Goodfellow J, Sharifi VN, Swithenbank J (2004) Modelling waste combustion in grate furnaces. Process Saf Environ Prot 82(3):208–222CrossRef
39.
go back to reference Kurz D, Schnell U, Scheffknecht G (2012) CFD simulation of wood chip combustion on a grate using an Euler–Euler approach. Combust Theory Model 16(2):251–273CrossRef Kurz D, Schnell U, Scheffknecht G (2012) CFD simulation of wood chip combustion on a grate using an Euler–Euler approach. Combust Theory Model 16(2):251–273CrossRef
40.
go back to reference Frigerio S, Thunman H, Leckner B, Hermansson S (Apr. 2008) Estimation of gas phase mixing in packed beds. Combust Flame 153(1–2):137–148CrossRef Frigerio S, Thunman H, Leckner B, Hermansson S (Apr. 2008) Estimation of gas phase mixing in packed beds. Combust Flame 153(1–2):137–148CrossRef
41.
go back to reference Perera MNKUC Kissinger method: The sequential approach and DAEM forkinetic study of Rubber and Gliricidia. Accepetd Publ J Natl Sci Found Sri Lanka Perera MNKUC Kissinger method: The sequential approach and DAEM forkinetic study of Rubber and Gliricidia. Accepetd Publ J Natl Sci Found Sri Lanka
42.
go back to reference Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRef Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRef
43.
go back to reference Ström H, Thunman H (2013) A computationally efficient particle submodel for CFD-simulations of fixed-bed conversion. Appl Energy 112:808–817CrossRef Ström H, Thunman H (2013) A computationally efficient particle submodel for CFD-simulations of fixed-bed conversion. Appl Energy 112:808–817CrossRef
44.
go back to reference Babu B, Chaurasia A (2003) Modeling for pyrolysis of solid particle: kinetics and heat transfer effects. Energy Convers Manag 44(14):2251–2275CrossRef Babu B, Chaurasia A (2003) Modeling for pyrolysis of solid particle: kinetics and heat transfer effects. Energy Convers Manag 44(14):2251–2275CrossRef
45.
go back to reference Ström H, Thunman H (2013) CFD simulations of biofuel bed conversion: a submodel for the drying and devolatilization of thermally thick wood particles. Combust Flame 160(2):417–431CrossRef Ström H, Thunman H (2013) CFD simulations of biofuel bed conversion: a submodel for the drying and devolatilization of thermally thick wood particles. Combust Flame 160(2):417–431CrossRef
46.
go back to reference Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena
47.
go back to reference Fernando N, Narayana M (2016) A comprehensive two dimensional computational fluid dynamics model for an updraft biomass gasifier. Renew Energy 99:698–710CrossRef Fernando N, Narayana M (2016) A comprehensive two dimensional computational fluid dynamics model for an updraft biomass gasifier. Renew Energy 99:698–710CrossRef
48.
go back to reference Sharma AK (2008) Equilibrium and kinetic modeling of char reduction reactions in a downdraft biomass gasifier: a comparison. Sol Energy 82(10):918–928CrossRef Sharma AK (2008) Equilibrium and kinetic modeling of char reduction reactions in a downdraft biomass gasifier: a comparison. Sol Energy 82(10):918–928CrossRef
49.
go back to reference Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuel 17(6):1510–1521CrossRef Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuel 17(6):1510–1521CrossRef
50.
go back to reference Bin Yang Y, Ryu C, Khor A, Sharifi VN, Swithenbank J (2005) Fuel size effect on pinewood combustion in a packed bed. Fuel 84(16):2026–2038CrossRef Bin Yang Y, Ryu C, Khor A, Sharifi VN, Swithenbank J (2005) Fuel size effect on pinewood combustion in a packed bed. Fuel 84(16):2026–2038CrossRef
Metadata
Title
Modelling of particle size effect on Equivalence Ratio requirement for wood combustion in fixed beds
Authors
K. Upuli C. Perera
Mahinsasa Narayana
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 1/2019
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-018-0348-0

Other articles of this Issue 1/2019

Biomass Conversion and Biorefinery 1/2019 Go to the issue