Skip to main content
Top

2024 | OriginalPaper | Chapter

Modelling of Tube Hydroforming Process: Identification of Best Process Parameters and Comparison Between Different FE Models

Authors : Andrea Abeni, Paola Ginestra, Antonio Fiorentino, Aldo Attanasio, Elisabetta Ceretti

Published in: Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tube hydroforming (THF) is an assessed production process for the fabrication of tubular components. Its main advantages are the enhancement of the material strength and the shortening of the production chain. Moreover, THF allows to obtain complex geometries all in one so reducing the number of production steps, assembly time and production costs. For these reasons, THF finds applications in many industrial fields. The design of the production process is typically done in two subsequent steps, using Finite Element Models (FEM) and, then, experiments. FEM allows to outline the process curves globally (punch strokes and pressures) and to estimate the loads (punch and die closing forces), while experiments validate the FEM and perform the final tuning of the process. To reduce the efforts in the experimental phase, a reliable FEM software is necessary. The available commercial software can be divided into two main groups depending on the solving algorithms: explicit and implicit. Explicit software is faster but less reliable, the opposite for implicit one. Moreover, in the case of thin-walled parts (such as tubes or sheets), also the type of mesh adopted can be grouped into two: shell and solid meshes. The main differences are the same as the solver, faster but less precise the first and the opposite for the second. Given these countertrends in computation, this paper aims at comparing two software for THF: an explicit with shell elements (PamStamp) and an implicit with solid elements (DeForm). The comparison will highlight the pro and cons of the two solutions and, finally, a trade-off will be proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang, S.H.: Developments in hydroforming. J. Mat. Proc. Technol. 91, 236–244 (1998)CrossRef Zhang, S.H.: Developments in hydroforming. J. Mat. Proc. Technol. 91, 236–244 (1998)CrossRef
2.
go back to reference Alaswad, A., Benyounis, K.Y., Olabi, A.G.: Tube hydroforming process: a reference guide. Mater. Des. 33, 328–339 (2012)CrossRef Alaswad, A., Benyounis, K.Y., Olabi, A.G.: Tube hydroforming process: a reference guide. Mater. Des. 33, 328–339 (2012)CrossRef
3.
go back to reference Ahmed, M., Hashmi, M.S.J.: Estimation of machine parameters for hydraulic bulge forming of tubular components. J Mater. Process Technol. 64, 9–23 (1997)CrossRef Ahmed, M., Hashmi, M.S.J.: Estimation of machine parameters for hydraulic bulge forming of tubular components. J Mater. Process Technol. 64, 9–23 (1997)CrossRef
6.
go back to reference Kim, B.J., VanTyne, C.J., Lee, M.Y., Moon, Y.H.: Finite element analysis and experimental confirmation of warm hydroforming process for aluminum alloy. J. Mater. Process. Technol. 187–188, 296–299 (2006) Kim, B.J., VanTyne, C.J., Lee, M.Y., Moon, Y.H.: Finite element analysis and experimental confirmation of warm hydroforming process for aluminum alloy. J. Mater. Process. Technol. 187–188, 296–299 (2006)
7.
go back to reference Koç, M., Altan, T.: Overall review of the tube hydroforming (THF) technology. J. Mater. Process. Technol. 108, 384–393 (2001)CrossRef Koç, M., Altan, T.: Overall review of the tube hydroforming (THF) technology. J. Mater. Process. Technol. 108, 384–393 (2001)CrossRef
8.
go back to reference Moon, Y.H., Kim, D.W., Van Tyne, C.J.: Analytical model for prediction of sidewall curl during stretch-bend sheet metal forming. Int. J. Mech. Sci. 50, 666–675 (2008)CrossRef Moon, Y.H., Kim, D.W., Van Tyne, C.J.: Analytical model for prediction of sidewall curl during stretch-bend sheet metal forming. Int. J. Mech. Sci. 50, 666–675 (2008)CrossRef
9.
go back to reference Oh, S.H., Jeon, B.H., Kim, H.Y., Yang, J.B.: Applications of hydroforming processes to automobile parts. J. Mater. Process. Technol. 174, 42–55 (2006)CrossRef Oh, S.H., Jeon, B.H., Kim, H.Y., Yang, J.B.: Applications of hydroforming processes to automobile parts. J. Mater. Process. Technol. 174, 42–55 (2006)CrossRef
10.
go back to reference Dohmann, F., Hartl, C.: Hydroforming – a method to manufacture light weight parts. J. Mater. Process. Technol. 60, 669–676 (1996)CrossRef Dohmann, F., Hartl, C.: Hydroforming – a method to manufacture light weight parts. J. Mater. Process. Technol. 60, 669–676 (1996)CrossRef
11.
go back to reference Liu, J., Zhang, Z., Manabe, K., et al.: Microstructure evolution in TRIPaided seamless steel tube during T-shape hydroforming process. Mater. Char. 94, 149–160 (2014)CrossRef Liu, J., Zhang, Z., Manabe, K., et al.: Microstructure evolution in TRIPaided seamless steel tube during T-shape hydroforming process. Mater. Char. 94, 149–160 (2014)CrossRef
12.
go back to reference Kang, B.H., Lee, M.Y., Shon, S.M., Moon, Y.H.: Forming various shapes of tubular bellows using a single-step hydroforming process. J. Mater. Process. Technol. 194, 1–6 (2007)CrossRef Kang, B.H., Lee, M.Y., Shon, S.M., Moon, Y.H.: Forming various shapes of tubular bellows using a single-step hydroforming process. J. Mater. Process. Technol. 194, 1–6 (2007)CrossRef
14.
go back to reference Sokolowski, T., Gerke, K., Ahmetoglu, M., et al.: Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes. J. of Mat. Proc. Tech. 98(1), 34–40 (2000)CrossRef Sokolowski, T., Gerke, K., Ahmetoglu, M., et al.: Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes. J. of Mat. Proc. Tech. 98(1), 34–40 (2000)CrossRef
15.
go back to reference Luege, M., Luccioni, B.M.: Numerical simulation of the lubricant performance in tube hydroforming. J Mat Proc Tech 198, 372–380 (2008)CrossRef Luege, M., Luccioni, B.M.: Numerical simulation of the lubricant performance in tube hydroforming. J Mat Proc Tech 198, 372–380 (2008)CrossRef
16.
go back to reference Hwang, Y.M., Lin, Y.K., Altan, T.: Evaluation of tubular materials by a hydraulic bulge test. Int. J. Mach. Tools Manuf. 47, 343–351 (2007)CrossRef Hwang, Y.M., Lin, Y.K., Altan, T.: Evaluation of tubular materials by a hydraulic bulge test. Int. J. Mach. Tools Manuf. 47, 343–351 (2007)CrossRef
17.
go back to reference Bortot, P., Ceretti, E., Giardini, C.: The determination of flow stress of tubular material for hydroforming applications. J. Mater. Process. Technol. 203, 381–388 (2008)CrossRef Bortot, P., Ceretti, E., Giardini, C.: The determination of flow stress of tubular material for hydroforming applications. J. Mater. Process. Technol. 203, 381–388 (2008)CrossRef
18.
go back to reference Fiorentino, A., Ceretti, E., Giardini, C.: Tube hydroforming compression test for friction estimation-numerical inverse method, application, and analysis. Int. J. Adv. Manuf. Technol. 64, 695–705 (2013)CrossRef Fiorentino, A., Ceretti, E., Giardini, C.: Tube hydroforming compression test for friction estimation-numerical inverse method, application, and analysis. Int. J. Adv. Manuf. Technol. 64, 695–705 (2013)CrossRef
Metadata
Title
Modelling of Tube Hydroforming Process: Identification of Best Process Parameters and Comparison Between Different FE Models
Authors
Andrea Abeni
Paola Ginestra
Antonio Fiorentino
Aldo Attanasio
Elisabetta Ceretti
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-41023-9_63

Premium Partners