Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

17-11-2020 | Production Process | Issue 5-6/2020

Production Engineering 5-6/2020

Modelling surface quality of abrasive water jet processing at multi-objective optimization criteria

Journal:
Production Engineering > Issue 5-6/2020
Author:
Ahmed S. Elmesalamy
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Al–Mg alloys belong to high mechanical properties aluminum alloys. They are used for different industries such as: automotive, and ship building, etc. Most of these industries depend on large sheet processing. Productivity of the used conventional processing techniques is considered a drawback specially for large plates cutting. High processing temperature can deteriorate the cut material properties. Abrasive water jet process (AWJ) is one of the modern nontraditional machining processes. It can be used for cutting most of materials with approximately zero thermal effect and relatively high cutting speed. Despite the high productivity of this technique, however quality of the cut surface is considered a challenge. During this study AWJ technique will be investigated for understanding the cutting quality behavior at high cutting speed without forfeiting the cutting quality. A control model is developed to understand the interactive relation between the control factors and output responses of the cutting process. It can be used for: prediction the surface behavior at different control parameters combinations, and recommend the control parameters which satisfy a certain surface quality. Cutting speed, main stream pressure, and (stand-off distance) were employed as control factors. Quality of cutting process will be assessed in terms of surface roughness, striation forming, kerf width, and cut taper angel. Model is optimized and verified experimentally at different conditions to evaluate the accuracy of the model prediction. The model validation shows a very good correlation between the experimental and optimization results.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 5-6/2020

Production Engineering 5-6/2020 Go to the issue

Premium Partners

    Image Credits