Skip to main content
Top

2019 | OriginalPaper | Chapter

42. Modelling the Behavior of Complex Media by Jointly Using Discrete and Continuum Approaches

Authors : Sergey G. Psakhie, Alexey Yu. Smolin, Evgeny V. Shilko, Andrey V. Dimaki

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Usually, computer simulation of the behavior of materials and complex media is based on the continuum approach, which uses highly developed mathematical apparatus of continuous functions. The capabilities of this approach are extremely wide, and the results obtained are well known. However, for of a number of very important processes, such as severe plastic deformation, mass mixing, damages initiation and development, material fragmentation, and so on, continuum methods of solid mechanics face certain hard difficulties. As a result, a great interest for the approach based on a discrete description of materials and media has been growing up in recent years. Because both continuum and discrete approaches have their own advantages and disadvantages and a great number of engineering software has been created based on continuum mechanics, the main line of discrete approach development seems to be not a substitute but a supplement to continuum methods in solving complex specific problems based on a joint using of the continuum and discrete approaches.
This chapter shows an example of joining discrete element method and grid method in an effort to model mechanical behavior of complex fluid-saturated poroelastic medium. The presented model adequately accounts for the deformation, fracture, and multiscale internal structure of a porous solid skeleton. The multiscale porous structure is taken into account implicitly by assigning the porosity and permeability values for the enclosing skeleton, which determine the rate of filtration of a fluid. Macroscopic pores and voids are taken into account explicitly by specifying the computational domain geometry. The relationship between the stress-strain state of the solid skeleton and pore fluid pressure is described in the approximations of a simply deformable discrete element and Biot’s model of poroelasticity. The capabilities of the presented approach were demonstrated in the case study of the shear loading of fluid-saturated samples of brittle material. Based on simulation results, a generalized logistic dependence of uniaxial compressive strength on loading rate, mechanical properties of the fluid, and enclosing skeleton and on sample dimensions was constructed. The logistic form of the generalized dependence of the strength of fluid-saturated elastic-brittle porous materials is due to the competition of two interrelated processes, such as pore fluid pressure increase under solid skeleton compression and fluid outflow from the enclosing skeleton to the environment. Another application of the presented approach is the study of the shear strength of a water-filled sample under constrained conditions. An elastic-plastic interface was situated between purely elastic permeable blocks that were loaded in the lateral direction with a constant velocity; periodic boundary conditions were applied in the lateral direction. In order to create an initial hydrostatic compression in a volume, a pre-loading was performed before shearing. The results of simulation show that shear strength of an elastic-plastic interface depends nonlinearly on the values of permeability and loading parameters. An analytical relation that approximates the obtained results of numerical simulation was proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Volfkovich YM, Filippov AN, Bagotsky VS. Structural properties of porous materials and powders used in different fields of science and technology. London: Springer; 2014.CrossRef Volfkovich YM, Filippov AN, Bagotsky VS. Structural properties of porous materials and powders used in different fields of science and technology. London: Springer; 2014.CrossRef
2.
go back to reference Doyen PM. Permeability, conductivity, and pore geometry of sandstone. J Geophy Res. 1988;93(B7):7729–40.CrossRef Doyen PM. Permeability, conductivity, and pore geometry of sandstone. J Geophy Res. 1988;93(B7):7729–40.CrossRef
3.
go back to reference Dong T, Harris NB, Ayranci K, Twemlow CE, Nassichuk BR. Porosity characteristics of the Devonian Horn River shale, Canada: insights from lithofacies classification and shale composition. Int J Coal Geol. 2015;141–142:74–90.CrossRef Dong T, Harris NB, Ayranci K, Twemlow CE, Nassichuk BR. Porosity characteristics of the Devonian Horn River shale, Canada: insights from lithofacies classification and shale composition. Int J Coal Geol. 2015;141–142:74–90.CrossRef
4.
go back to reference Carey JW, Lei Z, Rougier E, Mori H, Viswanathan H. Fracture-permeability behavior of shale. J Unconventional Oil Gas Resources. 2015;11:27–43.CrossRef Carey JW, Lei Z, Rougier E, Mori H, Viswanathan H. Fracture-permeability behavior of shale. J Unconventional Oil Gas Resources. 2015;11:27–43.CrossRef
5.
go back to reference Taylor D. Fracture and repair of bone: a multiscale problem. J Mater Sci. 2007;42:8911–8.CrossRef Taylor D. Fracture and repair of bone: a multiscale problem. J Mater Sci. 2007;42:8911–8.CrossRef
6.
go back to reference Fernando JA, Chung DDL. Pore structure and permeability of an alumina fiber filter membrane for hot gas filtration. J Porous Mater. 2002;9:211–9.CrossRef Fernando JA, Chung DDL. Pore structure and permeability of an alumina fiber filter membrane for hot gas filtration. J Porous Mater. 2002;9:211–9.CrossRef
7.
go back to reference Azami M, Samadikuchaksaraei A, Poursamar SA. Synthesis and characterization of hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int J Artif Organs. 2010;33:86–95.CrossRef Azami M, Samadikuchaksaraei A, Poursamar SA. Synthesis and characterization of hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int J Artif Organs. 2010;33:86–95.CrossRef
8.
9.
go back to reference Biot MA. The elastic coefficients of the theory of consolidation. J Appl Mech. 1957;24:594–601.MathSciNet Biot MA. The elastic coefficients of the theory of consolidation. J Appl Mech. 1957;24:594–601.MathSciNet
10.
go back to reference Detournay E, AHD C. Fundamentals of poroelasticity. Chapter 5. In: Fairhurst C, editor. Comprehensive rock engineering: principles, practice and projects, Analysis and design method, vol. II. Oxford: Pergamon Press; 1993. p. 113–71. Detournay E, AHD C. Fundamentals of poroelasticity. Chapter 5. In: Fairhurst C, editor. Comprehensive rock engineering: principles, practice and projects, Analysis and design method, vol. II. Oxford: Pergamon Press; 1993. p. 113–71.
11.
go back to reference Hamiel Y, Lyakhovsky V, Agnon A. Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks. Geophys J Int. 2004;156:701–13.CrossRef Hamiel Y, Lyakhovsky V, Agnon A. Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks. Geophys J Int. 2004;156:701–13.CrossRef
12.
go back to reference Lyakhovsky V, Hamiel Y. Damage evolution and fluid flow in Poroelastic rock. Izv Phy Solid Earth. 2007;43(1):13–23.CrossRef Lyakhovsky V, Hamiel Y. Damage evolution and fluid flow in Poroelastic rock. Izv Phy Solid Earth. 2007;43(1):13–23.CrossRef
13.
go back to reference Meirmanov AM. The Nguetseng method of two-scale convergence in the problems of filtration and seismoacoustics in elastic porous media. Sib Math J. 2007;48(3):645–67.CrossRef Meirmanov AM. The Nguetseng method of two-scale convergence in the problems of filtration and seismoacoustics in elastic porous media. Sib Math J. 2007;48(3):645–67.CrossRef
14.
go back to reference Horlin NE, Goransson P. Weak, anisotropic symmetric formulations of Biot’s equations for vibro-acoustic modelling of porous elastic materials. Int J Numer Methods Eng. 2010;84:1519–40.MathSciNetMATHCrossRef Horlin NE, Goransson P. Weak, anisotropic symmetric formulations of Biot’s equations for vibro-acoustic modelling of porous elastic materials. Int J Numer Methods Eng. 2010;84:1519–40.MathSciNetMATHCrossRef
15.
go back to reference Horlin NE. A symmetric weak form of Biot’s equations based on redundant variables representing the fluid, using a Helmholtz decomposition of the fluid displacement vector field. Int J Numer Methods Eng. 2010;84:1613–37.MathSciNetMATHCrossRef Horlin NE. A symmetric weak form of Biot’s equations based on redundant variables representing the fluid, using a Helmholtz decomposition of the fluid displacement vector field. Int J Numer Methods Eng. 2010;84:1613–37.MathSciNetMATHCrossRef
16.
go back to reference Bocharov OB, Rudiak VI, Seriakov AV. Simplest deformation models of a fluid-saturated poroelastic medium. J Min Sci. 2014;50(2):235–48.CrossRef Bocharov OB, Rudiak VI, Seriakov AV. Simplest deformation models of a fluid-saturated poroelastic medium. J Min Sci. 2014;50(2):235–48.CrossRef
17.
go back to reference Castelleto N, Ferronato M, Gambolati G. Thermo-hydro-mechanical modeling of fluid geological storage by Godunov-mixed methods. Int J Numer Methods Eng. 2012;90:988–1009.MathSciNetMATH Castelleto N, Ferronato M, Gambolati G. Thermo-hydro-mechanical modeling of fluid geological storage by Godunov-mixed methods. Int J Numer Methods Eng. 2012;90:988–1009.MathSciNetMATH
18.
go back to reference Gajo A, Denzer R. Finite element modelling of saturated porous media at finite strains under dynamic conditions with compressible constituents. Int J Numer Methods Eng. 2011;85:1705–36.MathSciNetMATHCrossRef Gajo A, Denzer R. Finite element modelling of saturated porous media at finite strains under dynamic conditions with compressible constituents. Int J Numer Methods Eng. 2011;85:1705–36.MathSciNetMATHCrossRef
19.
go back to reference Minkoff SE, Stone CM, Bryant S, Peszynska M, Wheeler MF. Coupled fluid flow and geomechanical deformation modeling. J Pet Sci Eng. 2003;38:37–56.CrossRef Minkoff SE, Stone CM, Bryant S, Peszynska M, Wheeler MF. Coupled fluid flow and geomechanical deformation modeling. J Pet Sci Eng. 2003;38:37–56.CrossRef
20.
go back to reference Swan CC, Lakes RS, Brand RA, Stewart KJ. Micromechanically based Poroelastic modeling of fluid flow in Haversian bone. J Biomech Eng. 2003;125:25–37.CrossRef Swan CC, Lakes RS, Brand RA, Stewart KJ. Micromechanically based Poroelastic modeling of fluid flow in Haversian bone. J Biomech Eng. 2003;125:25–37.CrossRef
21.
go back to reference Silbernagel MM. Modeling coupled fluid flow and Geomechanical and geophysical phenomena within a finite element framework. Golden: Colorado School of Mines; 2007. Silbernagel MM. Modeling coupled fluid flow and Geomechanical and geophysical phenomena within a finite element framework. Golden: Colorado School of Mines; 2007.
22.
go back to reference White JA, Borja RI. Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput Methods Appl Mech Eng. 2008;197:4353–66.MATHCrossRef White JA, Borja RI. Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput Methods Appl Mech Eng. 2008;197:4353–66.MATHCrossRef
23.
go back to reference Jha B, Juanes R. Coupled multiphase flow and poromechanics: a computational model of pore pressure effects on fault slip and earthquake triggering. Water Resour Res. 2014;50(5):3776–808.CrossRef Jha B, Juanes R. Coupled multiphase flow and poromechanics: a computational model of pore pressure effects on fault slip and earthquake triggering. Water Resour Res. 2014;50(5):3776–808.CrossRef
25.
go back to reference Masson YJ, Pride YJ, Nihei KT. Finite difference modeling of Biot’s poroelastic equations at seismic frequencies. J Geophys Res. 2006;111:B10305.CrossRef Masson YJ, Pride YJ, Nihei KT. Finite difference modeling of Biot’s poroelastic equations at seismic frequencies. J Geophys Res. 2006;111:B10305.CrossRef
26.
go back to reference Makarynska D, Gurevich B, Ciz R, Arns CH, Knackstedt MA. Finite element modelling of the effective elastic properties of partially saturated rocks. Comput Geosci. 2008;34:647–57.CrossRef Makarynska D, Gurevich B, Ciz R, Arns CH, Knackstedt MA. Finite element modelling of the effective elastic properties of partially saturated rocks. Comput Geosci. 2008;34:647–57.CrossRef
27.
go back to reference Nasedkina AA, Nasedkin AV, Iovane G. Modeling and finite element analysis of the nonstationary action on a multi-layer poroelastic seam with nonlinear geomechanical properties. J Min Sci. 2009;45(4):324–33.CrossRef Nasedkina AA, Nasedkin AV, Iovane G. Modeling and finite element analysis of the nonstationary action on a multi-layer poroelastic seam with nonlinear geomechanical properties. J Min Sci. 2009;45(4):324–33.CrossRef
28.
go back to reference Kim JMA. Fully coupled finite-element analysis of water-table fluctuation and land deformation in partially saturated soils due to surface loading. Int J Numer Methods Eng. 2000;49:1101–19.MATHCrossRef Kim JMA. Fully coupled finite-element analysis of water-table fluctuation and land deformation in partially saturated soils due to surface loading. Int J Numer Methods Eng. 2000;49:1101–19.MATHCrossRef
29.
go back to reference Dobroskok AA, Linkov AM. Modeling of fluid flow, stress state and seismicity induced in rock by an instant pressure drop in a hydrofracture. J Min Sci. 2011;47(1):10–9.CrossRef Dobroskok AA, Linkov AM. Modeling of fluid flow, stress state and seismicity induced in rock by an instant pressure drop in a hydrofracture. J Min Sci. 2011;47(1):10–9.CrossRef
30.
go back to reference Rodriguez-Ferran A, Sarrate J, Herta A. Numerical modelling of void inclusions in porous media. Int J Numer Methods Eng. 2004;59:577–96.MathSciNetMATHCrossRef Rodriguez-Ferran A, Sarrate J, Herta A. Numerical modelling of void inclusions in porous media. Int J Numer Methods Eng. 2004;59:577–96.MathSciNetMATHCrossRef
31.
go back to reference Rieth M. Nano-engineering in science and technology: an introduction to the world of Nano-Design. Singapore: World Scientific; 2003.CrossRef Rieth M. Nano-engineering in science and technology: an introduction to the world of Nano-Design. Singapore: World Scientific; 2003.CrossRef
32.
go back to reference Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique. 1979;29:47–65.CrossRef Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique. 1979;29:47–65.CrossRef
33.
go back to reference Mustoe GGW. A generalized formulation of the discrete element method. Eng Comput. 1992;9:181–90.CrossRef Mustoe GGW. A generalized formulation of the discrete element method. Eng Comput. 1992;9:181–90.CrossRef
34.
go back to reference Shi GH. Discontinuous deformation analysis – a new numerical model for statics and dynamics of block systems. Eng Comput. 1992;9(2):157–68.MathSciNetCrossRef Shi GH. Discontinuous deformation analysis – a new numerical model for statics and dynamics of block systems. Eng Comput. 1992;9(2):157–68.MathSciNetCrossRef
35.
go back to reference Munjiza AA, Knight EE, Rougier E. Computational mechanics of discontinua. Chichester: Wiley; 2012. Munjiza AA, Knight EE, Rougier E. Computational mechanics of discontinua. Chichester: Wiley; 2012.
37.
go back to reference Wang G, Al-Ostaz A, Cheng AHD, Mantena PR. Hybrid lattice particle modeling: theoretical considerations for a 2D elastic spring network for dynamic fracture simulations. Comput Mater Sci. 2009;44:112634.CrossRef Wang G, Al-Ostaz A, Cheng AHD, Mantena PR. Hybrid lattice particle modeling: theoretical considerations for a 2D elastic spring network for dynamic fracture simulations. Comput Mater Sci. 2009;44:112634.CrossRef
38.
go back to reference Lisjak A, Grasseli G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. Int J Rock Mech Min Sci. 2014;6:301–14. Lisjak A, Grasseli G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. Int J Rock Mech Min Sci. 2014;6:301–14.
39.
40.
go back to reference Bićanić N. Discrete element methods. In: Stein E, Borst R, Hughes TJR, editors. Encyclopedia of computational mechanics. Volume 1: fundamentals. Chichester: Wiley; 2004. p. 311–71. Bićanić N. Discrete element methods. In: Stein E, Borst R, Hughes TJR, editors. Encyclopedia of computational mechanics. Volume 1: fundamentals. Chichester: Wiley; 2004. p. 311–71.
41.
go back to reference Jing L, Stephansson O. Fundamentals of discrete element method for rock engineering: theory and applications. Amsterdam: Elsevier; 2007. Jing L, Stephansson O. Fundamentals of discrete element method for rock engineering: theory and applications. Amsterdam: Elsevier; 2007.
42.
go back to reference Williams JR, Hocking G, Mustoe GGW. The theoretical basis of the discrete element method. In: Balkema AA, editor. Numerical methods of engineering, theory and applications. Rotterdam: NUMETA; 1985. Williams JR, Hocking G, Mustoe GGW. The theoretical basis of the discrete element method. In: Balkema AA, editor. Numerical methods of engineering, theory and applications. Rotterdam: NUMETA; 1985.
43.
go back to reference Potyondy DO, Cundall PA. A bonded-particle model for rock. Int J Rock Mech Min Sci. 2004;41:1329–64.CrossRef Potyondy DO, Cundall PA. A bonded-particle model for rock. Int J Rock Mech Min Sci. 2004;41:1329–64.CrossRef
44.
go back to reference Tavarez FA, Plesha ME. Discrete element method for modelling solid and particulate materials. Int J Numer Methods Eng. 2007;70:379–404.MATHCrossRef Tavarez FA, Plesha ME. Discrete element method for modelling solid and particulate materials. Int J Numer Methods Eng. 2007;70:379–404.MATHCrossRef
45.
go back to reference Li M, Yu H, Wang J, Xia X, Chen JA. Multiscale coupling approach between discrete element method and finite difference method for dynamic analysis. Int J Numer Methods Eng. 2015;102:1–21.MathSciNetMATHCrossRef Li M, Yu H, Wang J, Xia X, Chen JA. Multiscale coupling approach between discrete element method and finite difference method for dynamic analysis. Int J Numer Methods Eng. 2015;102:1–21.MathSciNetMATHCrossRef
46.
go back to reference Lei Z, Rougier E, Knight EE, Munjiza A. A framework for grand scale parallelization of the combined finite discrete element method in 2d. Comput Part Mech. 2014;1(3):307–19.CrossRef Lei Z, Rougier E, Knight EE, Munjiza A. A framework for grand scale parallelization of the combined finite discrete element method in 2d. Comput Part Mech. 2014;1(3):307–19.CrossRef
47.
go back to reference Zhao GF, Khalili NA. Lattice spring model for coupled fluid flow and deformation problems in Geomechanics. Rock Mech Rock Eng. 2012;45:781–99. Zhao GF, Khalili NA. Lattice spring model for coupled fluid flow and deformation problems in Geomechanics. Rock Mech Rock Eng. 2012;45:781–99.
48.
go back to reference Cook BK, Noble DRA. Direct simulation method for particle-fluid systems. Eng Comput. 2011;21:151–68.MATHCrossRef Cook BK, Noble DRA. Direct simulation method for particle-fluid systems. Eng Comput. 2011;21:151–68.MATHCrossRef
49.
go back to reference Sakaguchi H, Muhlhaus HB. Hybrid modelling of coupled pore fluid-solid deformation problems. Pure Appl Geophys. 2000;157:1889–904.CrossRef Sakaguchi H, Muhlhaus HB. Hybrid modelling of coupled pore fluid-solid deformation problems. Pure Appl Geophys. 2000;157:1889–904.CrossRef
50.
go back to reference Han Y, Cundall PA. Lattice Boltzmann modeling of pore-scale fluid flow through idealized porous media. Int J Numer Methods Fluids. 2011;67:1720–34.MATHCrossRef Han Y, Cundall PA. Lattice Boltzmann modeling of pore-scale fluid flow through idealized porous media. Int J Numer Methods Fluids. 2011;67:1720–34.MATHCrossRef
51.
go back to reference Han Y, Cundall PA. LBM–DEM modeling of fluid–solid interaction in porous media. Int J Numer Anal Methods Geomech. 2013;37(10):1391–407.CrossRef Han Y, Cundall PA. LBM–DEM modeling of fluid–solid interaction in porous media. Int J Numer Anal Methods Geomech. 2013;37(10):1391–407.CrossRef
52.
go back to reference Psakhie SG, Ostermeyer GP, Dmitriev AI, Shilko EV, Smolin AY, Korostelev SY. Method of movable cellular automata as a new trend of discrete computational mechanics. I. Theoretical description. Phys Mesomech. 2000;3(2):5–12. Psakhie SG, Ostermeyer GP, Dmitriev AI, Shilko EV, Smolin AY, Korostelev SY. Method of movable cellular automata as a new trend of discrete computational mechanics. I. Theoretical description. Phys Mesomech. 2000;3(2):5–12.
53.
go back to reference Psakhie SG, Shilko EV, Grigoriev AS, Astafurov SV, Dimaki AV, Smolin AY. A mathematical model of particle–particle interaction for discrete element based modeling of deformation and fracture of heterogeneous elastic–plastic materials. Eng Fract Mech. 2014;130:96–115.CrossRef Psakhie SG, Shilko EV, Grigoriev AS, Astafurov SV, Dimaki AV, Smolin AY. A mathematical model of particle–particle interaction for discrete element based modeling of deformation and fracture of heterogeneous elastic–plastic materials. Eng Fract Mech. 2014;130:96–115.CrossRef
54.
go back to reference Shilko EV, Psakhie SG, Schmauder S, Popov VL, Astafurov SV, Smolin AY. Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure. Comput Mater Sci. 2015;102:267–85.CrossRef Shilko EV, Psakhie SG, Schmauder S, Popov VL, Astafurov SV, Smolin AY. Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure. Comput Mater Sci. 2015;102:267–85.CrossRef
55.
go back to reference Hahn M, Wallmersperger T, Kroplin BH. Discrete element representation of discontinua: proof of concept and determination of material parameters. Comput Mater Sci. 2010;50:391–402.CrossRef Hahn M, Wallmersperger T, Kroplin BH. Discrete element representation of discontinua: proof of concept and determination of material parameters. Comput Mater Sci. 2010;50:391–402.CrossRef
56.
go back to reference Dmitriev AI, Osterle W, Kloss H. Numerical simulation of typical contact situations of brake friction materials. Tribol Int. 2008;41:1–8.CrossRef Dmitriev AI, Osterle W, Kloss H. Numerical simulation of typical contact situations of brake friction materials. Tribol Int. 2008;41:1–8.CrossRef
57.
go back to reference Psakhie S, Ovcharenko V, Baohai Y, Shilko E, Astafurov S, Ivanov Y, Byeli A, Mokhovikov A. Influence of features of interphase boundaries on mechanical properties and fracture pattern in metal-ceramic composites. J Mater Sci Technol. 2013;29:1025–34.CrossRef Psakhie S, Ovcharenko V, Baohai Y, Shilko E, Astafurov S, Ivanov Y, Byeli A, Mokhovikov A. Influence of features of interphase boundaries on mechanical properties and fracture pattern in metal-ceramic composites. J Mater Sci Technol. 2013;29:1025–34.CrossRef
58.
go back to reference Psakhie SG, Ruzhich VV, Shilko EV, Popov VL, Astafurov SV. A new way to manage displacements in zones of active faults. Tribol Int. 2007;40:995–1003.CrossRef Psakhie SG, Ruzhich VV, Shilko EV, Popov VL, Astafurov SV. A new way to manage displacements in zones of active faults. Tribol Int. 2007;40:995–1003.CrossRef
59.
go back to reference Psakhie SG, Shilko EV, Smolin AY, Dimaki AV, Dmitriev AI, Konovalenko IS, Astafurov SV, Zavsek S. Approach to simulation of deformation and fracture of hierarchically organized heterogeneous media, including contrast media. Phys Mesomech. 2011;14(5–6):224–48.CrossRef Psakhie SG, Shilko EV, Smolin AY, Dimaki AV, Dmitriev AI, Konovalenko IS, Astafurov SV, Zavsek S. Approach to simulation of deformation and fracture of hierarchically organized heterogeneous media, including contrast media. Phys Mesomech. 2011;14(5–6):224–48.CrossRef
60.
go back to reference Zavsek S, Dimaki AV, Dmitriev AI, Shilko EV, Pezdic J, Psakhie SG. Hybrid cellular automata Metod. Application to research on mechanical response of contrast media. Phys Mesomech. 2013;16(1):42–51.CrossRef Zavsek S, Dimaki AV, Dmitriev AI, Shilko EV, Pezdic J, Psakhie SG. Hybrid cellular automata Metod. Application to research on mechanical response of contrast media. Phys Mesomech. 2013;16(1):42–51.CrossRef
61.
go back to reference Garagash IA, Nikolaevskiy VN. Non-associated laws of plastic flow and localization of deformation. Adv Mech. 1989;12(1):131–83.MathSciNet Garagash IA, Nikolaevskiy VN. Non-associated laws of plastic flow and localization of deformation. Adv Mech. 1989;12(1):131–83.MathSciNet
62.
go back to reference Stefanov YP. Deformation localization and fracture in geomaterials. Numerical simulation. Phys Mesomech. 2002;5–6:67–77. Stefanov YP. Deformation localization and fracture in geomaterials. Numerical simulation. Phys Mesomech. 2002;5–6:67–77.
63.
64.
go back to reference Kushch VI, Shmegera SV, Sevostianov I. SIF statistics in micro cracked solid: effect of crack density, orientation and clustering. Int J Eng Sci. 2009;47:192–208.MathSciNetMATHCrossRef Kushch VI, Shmegera SV, Sevostianov I. SIF statistics in micro cracked solid: effect of crack density, orientation and clustering. Int J Eng Sci. 2009;47:192–208.MathSciNetMATHCrossRef
65.
go back to reference Paterson MS, Wong TF. Experimental rock deformation. The brittle field. Berlin/Heidelberg: Springer; 2005. Paterson MS, Wong TF. Experimental rock deformation. The brittle field. Berlin/Heidelberg: Springer; 2005.
66.
go back to reference Yamaji A. An introduction to tectonophysics: theoretical aspects of structural geology. Tokyo: TERRAPUB; 2007. Yamaji A. An introduction to tectonophysics: theoretical aspects of structural geology. Tokyo: TERRAPUB; 2007.
67.
go back to reference Hangin J, Hager RV, Friedman M, Feather JN. Experimental deformation of sedimentary rocks under confining pressure: pore pressure tests. AAPG Bull. 1963;47(5):717–55. Hangin J, Hager RV, Friedman M, Feather JN. Experimental deformation of sedimentary rocks under confining pressure: pore pressure tests. AAPG Bull. 1963;47(5):717–55.
68.
go back to reference Stavrogin AN, Tarasov BG. Experimental physics & rock mechanics. Lisse: CRC Press; 2001. Stavrogin AN, Tarasov BG. Experimental physics & rock mechanics. Lisse: CRC Press; 2001.
69.
go back to reference Kwon O, Kronenberg AK, Gangi AF, Johnson B. Permeability of Wilcox shale and its effective pressure law. J Geophys Res. 2001;106(B9):19339–53.CrossRef Kwon O, Kronenberg AK, Gangi AF, Johnson B. Permeability of Wilcox shale and its effective pressure law. J Geophys Res. 2001;106(B9):19339–53.CrossRef
70.
go back to reference Robin PYF. Note on effective pressure. J Geophys Res. 1973;78(14):2434–7.CrossRef Robin PYF. Note on effective pressure. J Geophys Res. 1973;78(14):2434–7.CrossRef
71.
go back to reference Gangi AF, Carlson RL. An asperity-deformation model for effective pressure. Tectonophysics. 1996;256:241–51.CrossRef Gangi AF, Carlson RL. An asperity-deformation model for effective pressure. Tectonophysics. 1996;256:241–51.CrossRef
72.
go back to reference Boitnott GN, Scholz CH. Direct measurement of the effective pressure law: deformation of joints subject to pore and confining pressure. J Geophys Res. 1990;95(B12):19279–I9298.CrossRef Boitnott GN, Scholz CH. Direct measurement of the effective pressure law: deformation of joints subject to pore and confining pressure. J Geophys Res. 1990;95(B12):19279–I9298.CrossRef
73.
go back to reference Basniev KS, Dmitriev NM, Chilingar GV, Gorfunkle M. Mechanics of fluid flow. Hoboken: Wiley; 2012.CrossRef Basniev KS, Dmitriev NM, Chilingar GV, Gorfunkle M. Mechanics of fluid flow. Hoboken: Wiley; 2012.CrossRef
74.
go back to reference Loytsyanskii LG. Mechanics of liquids and gases. Oxford: Pergamon-Press; 1966. Loytsyanskii LG. Mechanics of liquids and gases. Oxford: Pergamon-Press; 1966.
75.
go back to reference Zwietering MH, Jongenburger I, Rombouts FM, Van’T Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875–81. Zwietering MH, Jongenburger I, Rombouts FM, Van’T Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875–81.
76.
go back to reference Psakhie SG, Dimaki AV, Shilko EV, Astafurov SV. A coupled discrete element-finite difference approach for modeling mechanical response of fluid-saturated porous materials. International Journal for Numerical Methods in Engineering 2016;106(8):623–643.MathSciNetMATHCrossRef Psakhie SG, Dimaki AV, Shilko EV, Astafurov SV. A coupled discrete element-finite difference approach for modeling mechanical response of fluid-saturated porous materials. International Journal for Numerical Methods in Engineering 2016;106(8):623–643.MathSciNetMATHCrossRef
77.
go back to reference Evgeny V. Shilko, Andrey V. Dimaki, Sergey G. Psakhie, Strength of shear bands in fluid-saturated rocks: a nonlinear effect of competition between dilation and fluid flow. Scientific Reports 2018;8(1). Evgeny V. Shilko, Andrey V. Dimaki, Sergey G. Psakhie, Strength of shear bands in fluid-saturated rocks: a nonlinear effect of competition between dilation and fluid flow. Scientific Reports 2018;8(1).
Metadata
Title
Modelling the Behavior of Complex Media by Jointly Using Discrete and Continuum Approaches
Authors
Sergey G. Psakhie
Alexey Yu. Smolin
Evgeny V. Shilko
Andrey V. Dimaki
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_79

Premium Partners