Skip to main content
Top
Published in: Environmental Earth Sciences 15/2016

01-08-2016 | Original Article

Modelling the root zone soil moisture using artificial neural networks, a case study

Author: Mustafa Al-Mukhtar

Published in: Environmental Earth Sciences | Issue 15/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Surface soil moisture constitutes a major component in the Earth’s water cycle. In many cases, modelling and predicting soil moisture represent a serious problem in water resources field due to the problematic measurements or lack of measurements, etc. Data-driven models such as artificial neural networks (ANN) have been characterized as a robust tool to overcome these shortcomings. This study aims to identify the optimum ANNs to model the root zone soil moisture (up to 2 m depth) in the upper reach of the Spree River using the synthetic soil moisture data from SWAT model. Thus, three different approaches were developed and compared to determine the highest performing method. These networks can be broadly categorized into dynamic, static, and statistical neural networks, which are layer recurrent network (LRN), feedforward (FF), and radial basis networks, respectively. Data sets of precipitation and antecedent soil moisture were selected based on quantification of cross-, auto-, and partial autocorrelation coefficients to represent the best behaviour of root soil moisture. The time series data were subdivided into two subsets: one for network training and the second for network testing. The determination coefficient (R 2), root-mean-square error, and Nash–Sutcliffe efficiency were employed to test the goodness of fit between the actual and modelled data. Results show that, among the used methods, the LRN and FF networks have the top performance criteria, showing a reliable ability to be used as estimator for the soil moisture in this catchment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Al-Mukhtar M, Volkmar D, Merkel B (2013) Evaluation of the climate generator model CLIGEN for rainfall data simulation in Bautzen catchment area, Germany. Hydrol Res. doi:10.2166/nh.2013.073 Al-Mukhtar M, Volkmar D, Merkel B (2013) Evaluation of the climate generator model CLIGEN for rainfall data simulation in Bautzen catchment area, Germany. Hydrol Res. doi:10.​2166/​nh.​2013.​073
go back to reference Arnold J, Srinivasan R (1998) Large area hydrologic modeling and assessment part I: model development1. JAWRA 34(1):73–89 Arnold J, Srinivasan R (1998) Large area hydrologic modeling and assessment part I: model development1. JAWRA 34(1):73–89
go back to reference ASCE Task Committee on Application of Artificial Neural Networks in hydrology (2000) Artificial neural networks in hydrology. II: hydrologic applications. J Hydrol Eng 5(2):124–137CrossRef ASCE Task Committee on Application of Artificial Neural Networks in hydrology (2000) Artificial neural networks in hydrology. II: hydrologic applications. J Hydrol Eng 5(2):124–137CrossRef
go back to reference Beale MH, Hagen MT, Demuth HB (2012) Neural network toolbox: users guide. The MathWorks, Inc Beale MH, Hagen MT, Demuth HB (2012) Neural network toolbox: users guide. The MathWorks, Inc
go back to reference Boden AG (2005) Bodenkundliche Kartieranleitung, 5. Auflage. Herausgeber: Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover Boden AG (2005) Bodenkundliche Kartieranleitung, 5. Auflage. Herausgeber: Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover
go back to reference Collins DBG, Bras RL (2008) Climatic control of sediment yield in dry lands following climate and land cover change. Water Resour Res 44(10):357–367CrossRef Collins DBG, Bras RL (2008) Climatic control of sediment yield in dry lands following climate and land cover change. Water Resour Res 44(10):357–367CrossRef
go back to reference Coppola E Jr, Poulton M, Charles E, Dustman J, Szidarovszky F (2003) Application of artificial neural networks to complex groundwater management problems. Nat Resour Res 12(4):303–320CrossRef Coppola E Jr, Poulton M, Charles E, Dustman J, Szidarovszky F (2003) Application of artificial neural networks to complex groundwater management problems. Nat Resour Res 12(4):303–320CrossRef
go back to reference Coulibaly P, Anctil F, Aravena R, Bobée B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37(4):885–896CrossRef Coulibaly P, Anctil F, Aravena R, Bobée B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37(4):885–896CrossRef
go back to reference Crow WT et al (2012) Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev Geophys 50:RG2002. doi:10.1029/2011RG000372 CrossRef Crow WT et al (2012) Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev Geophys 50:RG2002. doi:10.​1029/​2011RG000372 CrossRef
go back to reference DeBarry PA (2004) Watersheds: processes, assessment, and management. Wiley Hoboken, NJ DeBarry PA (2004) Watersheds: processes, assessment, and management. Wiley Hoboken, NJ
go back to reference Dolling OR, Varas EA (2002) Artificial neural networks for streamflow prediction. J Hydraul Res 40(5):547–554CrossRef Dolling OR, Varas EA (2002) Artificial neural networks for streamflow prediction. J Hydraul Res 40(5):547–554CrossRef
go back to reference Eltahir EAB (1998) A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour Res 34(4):765–776CrossRef Eltahir EAB (1998) A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour Res 34(4):765–776CrossRef
go back to reference Gao X, Wu P, Zhao X, Wang J, Shi Y, Zhang B, Tian L, Li H (2013) Estimation of spatial soil moisture averages in a large gully of the Loess Plateau of China through statistical and modeling solutions. J Hydrol 486:466–478. doi:10.1016/j.jhydrol.2013.02.026 CrossRef Gao X, Wu P, Zhao X, Wang J, Shi Y, Zhang B, Tian L, Li H (2013) Estimation of spatial soil moisture averages in a large gully of the Loess Plateau of China through statistical and modeling solutions. J Hydrol 486:466–478. doi:10.​1016/​j.​jhydrol.​2013.​02.​026 CrossRef
go back to reference Haan CT (2002) Statistical methods in hydrology, 2nd edn. The Iowa State University Press, Iowa Haan CT (2002) Statistical methods in hydrology, 2nd edn. The Iowa State University Press, Iowa
go back to reference Jackson TJ (1997) Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resour Res 33(6):1475–1484CrossRef Jackson TJ (1997) Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resour Res 33(6):1475–1484CrossRef
go back to reference Jha M, Pan Z, Takle ES, Gu R (2004) Impacts of climate change on streamflow in the upper Mississippi river basin: a regional climate model perspective. J Geophys Res 109(D9):D09105. doi:10.1029/2003JD003686 CrossRef Jha M, Pan Z, Takle ES, Gu R (2004) Impacts of climate change on streamflow in the upper Mississippi river basin: a regional climate model perspective. J Geophys Res 109(D9):D09105. doi:10.​1029/​2003JD003686 CrossRef
go back to reference Kisi Ö (2004) River flow modeling using artificial neural networks. J Hydrol Eng 9(1):60–63CrossRef Kisi Ö (2004) River flow modeling using artificial neural networks. J Hydrol Eng 9(1):60–63CrossRef
go back to reference Kişi Ö (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng 12(5):532–539CrossRef Kişi Ö (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng 12(5):532–539CrossRef
go back to reference Kohonen T (2012) Self-organization and associative memory, vol 8. Springer, Berlin Kohonen T (2012) Self-organization and associative memory, vol 8. Springer, Berlin
go back to reference Langevin CD, Panday S (2012) Future of groundwater modeling. Groundwater 50(3):334–339CrossRef Langevin CD, Panday S (2012) Future of groundwater modeling. Groundwater 50(3):334–339CrossRef
go back to reference Machiwal D, Jha MK (2008) Comparative evaluation of statistical tests for time series analysis: application to hydrological time series/evaluation comparative de tests statistiques pour l’analyse de s{é}ries temporelles: application à des s{é}ries temporelles hydrologiques. Hydrol Sci J 53(2):353–366CrossRef Machiwal D, Jha MK (2008) Comparative evaluation of statistical tests for time series analysis: application to hydrological time series/evaluation comparative de tests statistiques pour l’analyse de s{é}ries temporelles: application à des s{é}ries temporelles hydrologiques. Hydrol Sci J 53(2):353–366CrossRef
go back to reference Machiwal D, Jha MK (2012) Hydrologic time series analysis: theory and practice. Springer, BerlinCrossRef Machiwal D, Jha MK (2012) Hydrologic time series analysis: theory and practice. Springer, BerlinCrossRef
go back to reference Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4):1013–1022CrossRef Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4):1013–1022CrossRef
go back to reference Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417CrossRef Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417CrossRef
go back to reference Moriasi DN, Arnold JG, Van Liew MV, Binger RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng 50(3):885–900 Moriasi DN, Arnold JG, Van Liew MV, Binger RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng 50(3):885–900
go back to reference Mutlu E, Chaubey I, Hexmoor H, Bajwa SG (2008) Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol Process. doi:10.1002/hyp.7136 Mutlu E, Chaubey I, Hexmoor H, Bajwa SG (2008) Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol Process. doi:10.​1002/​hyp.​7136
go back to reference Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part1-A discussion of principles. J Hydrol 10(3):282–290CrossRef Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part1-A discussion of principles. J Hydrol 10(3):282–290CrossRef
go back to reference Pan F, Peters-Lidard CD, Sale MJ (2003) An analytical method for predicting surface soil moisture from rainfall observations. Water Resour Res 39(11), Article No. 1314. doi:10.1029/2003WR002142 Pan F, Peters-Lidard CD, Sale MJ (2003) An analytical method for predicting surface soil moisture from rainfall observations. Water Resour Res 39(11), Article No. 1314. doi:10.​1029/​2003WR002142
go back to reference Rodriguez-Iturbe I, D’odorico P, Porporato A, Ridolfi L (1999) On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour Res 35(12):3709–3722CrossRef Rodriguez-Iturbe I, D’odorico P, Porporato A, Ridolfi L (1999) On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour Res 35(12):3709–3722CrossRef
go back to reference Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4(3):232–239CrossRef Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4(3):232–239CrossRef
go back to reference Wetzel PJ, Atlas D, Woodward RH (1984) Determining soil moisture from geosynchronous satellite infrared data: a feasibility study. J Clim Appl Meteorol 23(3):375–391CrossRef Wetzel PJ, Atlas D, Woodward RH (1984) Determining soil moisture from geosynchronous satellite infrared data: a feasibility study. J Clim Appl Meteorol 23(3):375–391CrossRef
Metadata
Title
Modelling the root zone soil moisture using artificial neural networks, a case study
Author
Mustafa Al-Mukhtar
Publication date
01-08-2016
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 15/2016
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-016-5929-2

Other articles of this Issue 15/2016

Environmental Earth Sciences 15/2016 Go to the issue