Skip to main content
Top

2019 | OriginalPaper | Chapter

15. Modification of Cellulose

Authors : Sajjad Keshipour, Ali Maleki

Published in: Cellulose-Based Superabsorbent Hydrogels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With increasing concerns about synthetic polymers for the environment, the application of natural polymers, especially cellulose due to abundance, biodegradability, nontoxicity, and high functionality, is increasing. For inducing the desired properties of cellulose, it’s necessary to manipulate the cellulose structure. Therefore, the modification of cellulose becomes important. The modification of cellulose is introducing organic and inorganic compounds on the polymer. A significant variation in the cellulose properties can be observed with the binding of polymers. Also, mineralization of cellulose has attracted a great deal of attention in recent years. This chapter investigated all of these modifications on cellulose.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schützenberger P (1865) Action of anhydrous acetic acid on cellulose, starch, sugars, mannite and its congeners, glycosides and certain vegetable dyestuffs. Compt Rend Sci 61:484–487 Schützenberger P (1865) Action of anhydrous acetic acid on cellulose, starch, sugars, mannite and its congeners, glycosides and certain vegetable dyestuffs. Compt Rend Sci 61:484–487
2.
go back to reference Schützenberger P (1869) On a new class of platinum compounds. Ber Dtsch Chem Ges 2:163 Schützenberger P (1869) On a new class of platinum compounds. Ber Dtsch Chem Ges 2:163
3.
go back to reference Franchimont A (1879) Comprehensive cellulose chemistry, functionalization of cellulose. Compt Rend 89:111 Franchimont A (1879) Comprehensive cellulose chemistry, functionalization of cellulose. Compt Rend 89:111
4.
go back to reference Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27(19):1670–1676CrossRef Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27(19):1670–1676CrossRef
5.
go back to reference Shimizu Y, Hayashi J (1988) A new method for cellulose acetylation with acetic acid. Sen’i Gakkaishi 44(9):451–456CrossRef Shimizu Y, Hayashi J (1988) A new method for cellulose acetylation with acetic acid. Sen’i Gakkaishi 44(9):451–456CrossRef
6.
go back to reference Johnson DC, Nicholson MD (1976) Dimethyl sulfoxide/paraformaldehyde: a nondegrading solvent for cellulose. Appl Polym Symp 28:931 Johnson DC, Nicholson MD (1976) Dimethyl sulfoxide/paraformaldehyde: a nondegrading solvent for cellulose. Appl Polym Symp 28:931
7.
go back to reference Philipp B, Fanter C, Wagenknecht W, Hartmann M, Klemm D, Geschwend G, Schumann P (1983) Comprehensive cellulose chemistry. Cellul Chem Technol 77:341–353 Philipp B, Fanter C, Wagenknecht W, Hartmann M, Klemm D, Geschwend G, Schumann P (1983) Comprehensive cellulose chemistry. Cellul Chem Technol 77:341–353
8.
go back to reference Miyamoto T, Sato Y, Shibata T, Tanahashi M, Inagaki HJ (1985) 13C-NMR spectral studies on the distribution of substituents in water-soluble cellulose acetate. J Polym Sci Polym Chem Ed 23(5):1373–1381CrossRef Miyamoto T, Sato Y, Shibata T, Tanahashi M, Inagaki HJ (1985) 13C-NMR spectral studies on the distribution of substituents in water-soluble cellulose acetate. J Polym Sci Polym Chem Ed 23(5):1373–1381CrossRef
9.
go back to reference Seymor RB, Johnson EL (1978) Acetylation of DMSO: PF solutions of cellulose. J Polym Sci Polym Chem Ed 16:1–11CrossRef Seymor RB, Johnson EL (1978) Acetylation of DMSO: PF solutions of cellulose. J Polym Sci Polym Chem Ed 16:1–11CrossRef
10.
go back to reference Clermont LP, Manery N (1974) Modifiziertes celluloseacetat hergestellt durch reaktion von essigsäureanhydrid mit cellulose gelöst in einer chloral-dimethylformamid-mischung. J Appl Polym Sci 78:2773–2784CrossRef Clermont LP, Manery N (1974) Modifiziertes celluloseacetat hergestellt durch reaktion von essigsäureanhydrid mit cellulose gelöst in einer chloral-dimethylformamid-mischung. J Appl Polym Sci 78:2773–2784CrossRef
11.
go back to reference Heinze Th, Rahn K, Jaspers M, Berghmans H (1996) Thermal studies on homogeneously synthesized cellulose p-toluenesulfonates. J Appl Polym Sci 60(11):1891–1900 Heinze Th, Rahn K, Jaspers M, Berghmans H (1996) Thermal studies on homogeneously synthesized cellulose p-toluenesulfonates. J Appl Polym Sci 60(11):1891–1900
12.
go back to reference Stein A, Klemm D (1988) Preparation and characterization of monolayer and multilayer Langmuir-Blodgett films of a series of 6-O-alkylcelluloses. Makromol Chem Rapid Commun 9(8):569–573CrossRef Stein A, Klemm D (1988) Preparation and characterization of monolayer and multilayer Langmuir-Blodgett films of a series of 6-O-alkylcelluloses. Makromol Chem Rapid Commun 9(8):569–573CrossRef
13.
go back to reference Philipp B, Wagenknecht W (1983) Cellulose sulphate half-ester. Synthesis, structure and properties. Cellul Chem Technol 77:443–459 Philipp B, Wagenknecht W (1983) Cellulose sulphate half-ester. Synthesis, structure and properties. Cellul Chem Technol 77:443–459
14.
go back to reference Cunha AG, Zhou Q, Larsson PT, Berglund LA (2014) Topochemical acetylation of cellulose nanopaper structure for biocomposites: mechanisms for reduced water vapor sorption. Cellulose 21(4):2773–2787CrossRef Cunha AG, Zhou Q, Larsson PT, Berglund LA (2014) Topochemical acetylation of cellulose nanopaper structure for biocomposites: mechanisms for reduced water vapor sorption. Cellulose 21(4):2773–2787CrossRef
15.
go back to reference Takahashi SL, Fujimoto T, Barua BM, Miyamoto T, Inagaki H (1986) Synthesis and characterization of cellulose derivatives prepared in NaOH/Urea aqueous solutions. J Polym Sci A Polym Chem 24(11):2981–2993CrossRef Takahashi SL, Fujimoto T, Barua BM, Miyamoto T, Inagaki H (1986) Synthesis and characterization of cellulose derivatives prepared in NaOH/Urea aqueous solutions. J Polym Sci A Polym Chem 24(11):2981–2993CrossRef
16.
go back to reference Schnabelrauch M, Vogt S, Klemm D, Nehls L, Philipp B (1992) Readily hydrolyzable cellulose esters as intermediates for the regioselective derivatization of cellulose, 1. Synthesis and characterization of soluble, low-substituted cellulose formates. Angew Macromol Chem 198(1):155–164CrossRef Schnabelrauch M, Vogt S, Klemm D, Nehls L, Philipp B (1992) Readily hydrolyzable cellulose esters as intermediates for the regioselective derivatization of cellulose, 1. Synthesis and characterization of soluble, low-substituted cellulose formates. Angew Macromol Chem 198(1):155–164CrossRef
17.
go back to reference Vigo TL, Daighly BJ, Welch CM (1972) Action of cellulose with chlorodimethylformiminium chloride and subsequent reaction with halide ions. J Polym Sci B Polym Phys 10:397–406CrossRef Vigo TL, Daighly BJ, Welch CM (1972) Action of cellulose with chlorodimethylformiminium chloride and subsequent reaction with halide ions. J Polym Sci B Polym Phys 10:397–406CrossRef
18.
go back to reference Farvardin GR, Howard P (1985) In: Kennedy JF (ed) Cellulose and its derivatives. Ellis Horwood, Chichester, pp 227–236 Farvardin GR, Howard P (1985) In: Kennedy JF (ed) Cellulose and its derivatives. Ellis Horwood, Chichester, pp 227–236
19.
go back to reference Samaranayake G, Glasser WG (1993) Cellulose derivatives with low DS: II. Analysis of alkanoates. Carbohydr Polym 22(2):79–86CrossRef Samaranayake G, Glasser WG (1993) Cellulose derivatives with low DS: II. Analysis of alkanoates. Carbohydr Polym 22(2):79–86CrossRef
20.
go back to reference Guo J-X, Gray DG (1994) Preparation, characterization, and mesophase formation of esters of ethylcellulose and methylcellulose. J Polym Sci A Polym Chem 32(5):889–896CrossRef Guo J-X, Gray DG (1994) Preparation, characterization, and mesophase formation of esters of ethylcellulose and methylcellulose. J Polym Sci A Polym Chem 32(5):889–896CrossRef
21.
go back to reference Battista OA, Armstrong AT, Radchenko SS (1978) Novel derivatives of cellulose microcrystals. Polym Prepr Am Chem Soc Div Polym Chem 19:567–571 Battista OA, Armstrong AT, Radchenko SS (1978) Novel derivatives of cellulose microcrystals. Polym Prepr Am Chem Soc Div Polym Chem 19:567–571
22.
go back to reference Shimizu Y, Nakayama A, Hayashi J (1993) In: Kennedy JF, Phillips GO, Williams DA (eds) Cellulosics chemical biochemical material aspects. Ellis Horwood, Chichester, pp 369–374 Shimizu Y, Nakayama A, Hayashi J (1993) In: Kennedy JF, Phillips GO, Williams DA (eds) Cellulosics chemical biochemical material aspects. Ellis Horwood, Chichester, pp 369–374
23.
go back to reference Shimizu Y, Nakayama A, Hayashi J (1993) Preparation of cellulose esters with aromatic carboxylic acids. Sen’i Gakkaishi 49(7):352–356CrossRef Shimizu Y, Nakayama A, Hayashi J (1993) Preparation of cellulose esters with aromatic carboxylic acids. Sen’i Gakkaishi 49(7):352–356CrossRef
24.
go back to reference Kwatra HS, Caruthers JM, Tao BY (1992) Surface chemical modification of natural cellulose fibers. Ind Eng Chem Res 31:2647–2651CrossRef Kwatra HS, Caruthers JM, Tao BY (1992) Surface chemical modification of natural cellulose fibers. Ind Eng Chem Res 31:2647–2651CrossRef
25.
go back to reference Freire CSR, Silvestre AJD, Pascoal Neto C, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100(2):1093–1102CrossRef Freire CSR, Silvestre AJD, Pascoal Neto C, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100(2):1093–1102CrossRef
26.
go back to reference Tomé LC, Freire MG, Rebelo LPN, Silvestre AJD, Neto CP, Marrucho IM, Freire CSR (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13(9):2464–2470CrossRef Tomé LC, Freire MG, Rebelo LPN, Silvestre AJD, Neto CP, Marrucho IM, Freire CSR (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13(9):2464–2470CrossRef
27.
go back to reference Fumagalli M, Sanchez F, Boisseau SM, Heux L (2013) Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9(47):11309–11317CrossRef Fumagalli M, Sanchez F, Boisseau SM, Heux L (2013) Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9(47):11309–11317CrossRef
28.
go back to reference Almasi H, Ghanbarzadeh B, Dehghannia J, Pirsa S, Zandi M (2015) Heterogeneous modification of softwoods cellulose nanofibers with oleic acid: effect of reaction time and oleic acid concentration. Fibers Polym 16(8):1715–1722CrossRef Almasi H, Ghanbarzadeh B, Dehghannia J, Pirsa S, Zandi M (2015) Heterogeneous modification of softwoods cellulose nanofibers with oleic acid: effect of reaction time and oleic acid concentration. Fibers Polym 16(8):1715–1722CrossRef
29.
go back to reference Braun D, Bahlig KH (1994) Herstellung und eigenschaften von cellulosebenzoat. Angew Makromol Chem 220(1):199–207CrossRef Braun D, Bahlig KH (1994) Herstellung und eigenschaften von cellulosebenzoat. Angew Makromol Chem 220(1):199–207CrossRef
30.
go back to reference Mannschreck A, Wernicke R (1990) Mikrokristalline Tribenzoylcellulose, ein vielseitiges Sorbens für die Enantiomerentrennung. Labor Praxis 14:730–738 Mannschreck A, Wernicke R (1990) Mikrokristalline Tribenzoylcellulose, ein vielseitiges Sorbens für die Enantiomerentrennung. Labor Praxis 14:730–738
31.
go back to reference Isogai A, Ishizu A, Nakano J (1988) Conversion of tri-O-benzylcellulose to benzoylcellulose by ozonization. Sen’i Gakkaishi 44(6):312–315CrossRef Isogai A, Ishizu A, Nakano J (1988) Conversion of tri-O-benzylcellulose to benzoylcellulose by ozonization. Sen’i Gakkaishi 44(6):312–315CrossRef
32.
go back to reference Ishizu A, Isogai A, Tomikawa M, Nakamo J (1991) Preparation of cellulose cinnamate and distribution of cinnamoyl groups. Mokuzai Gakkaishi 37:829–833 Ishizu A, Isogai A, Tomikawa M, Nakamo J (1991) Preparation of cellulose cinnamate and distribution of cinnamoyl groups. Mokuzai Gakkaishi 37:829–833
33.
go back to reference Jasmani L, Eyley S, Schutz C, Gorp HV, Feyter SD, Thielemans W (2016) One-pot functionalization of cellulose nanocrystals with various cationic groups. Cellulose 23(6):3569–3576CrossRef Jasmani L, Eyley S, Schutz C, Gorp HV, Feyter SD, Thielemans W (2016) One-pot functionalization of cellulose nanocrystals with various cationic groups. Cellulose 23(6):3569–3576CrossRef
34.
go back to reference Levesque G, Chiron G, Roux O (1987) Cellulose and chitosan hydrogen phthalates. Makromol Chem 188(7):1659–1664CrossRef Levesque G, Chiron G, Roux O (1987) Cellulose and chitosan hydrogen phthalates. Makromol Chem 188(7):1659–1664CrossRef
35.
go back to reference Kalaskar DM, Gough JE, Ulijn RV, Sampson WW, Scurr DJ, Rutten FJ, Alexander MR, Merry CLR, Eichhorn SJ (2008) Controlling cell morphology on amino acid-modified cellulose. Soft Matter 4(5):1059–1065CrossRefPubMed Kalaskar DM, Gough JE, Ulijn RV, Sampson WW, Scurr DJ, Rutten FJ, Alexander MR, Merry CLR, Eichhorn SJ (2008) Controlling cell morphology on amino acid-modified cellulose. Soft Matter 4(5):1059–1065CrossRefPubMed
36.
go back to reference Cateto CA, Ragauskas A (2011) Amino acid modified cellulose whiskers. RSC Adv 1(9):1695–1697CrossRef Cateto CA, Ragauskas A (2011) Amino acid modified cellulose whiskers. RSC Adv 1(9):1695–1697CrossRef
37.
go back to reference Honeyman J (1947) Reactions of cellulose. Part I. J Chem Soc 168 Honeyman J (1947) Reactions of cellulose. Part I. J Chem Soc 168
38.
go back to reference Rahn K, Diamatoglou M, Klemm D, Berghmans H, Heinze TH (1996) Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system. Angew Makromol Chem 238(1):143–163CrossRef Rahn K, Diamatoglou M, Klemm D, Berghmans H, Heinze TH (1996) Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system. Angew Makromol Chem 238(1):143–163CrossRef
39.
go back to reference Burchard W, Husemann E (1961) Eine vergleichende strukturanalyse von cellulose-und amylase-tricarbanilaten in lösung. Makromol Chem 44(1):358–387CrossRef Burchard W, Husemann E (1961) Eine vergleichende strukturanalyse von cellulose-und amylase-tricarbanilaten in lösung. Makromol Chem 44(1):358–387CrossRef
40.
go back to reference Terbojevich M, Cosani A, Camilot M, Focher B (1995) Solution studies of cellulose tricarbanilates obtained in homogeneous phase. J Appl Polym Sci 55(12):1663–1671CrossRef Terbojevich M, Cosani A, Camilot M, Focher B (1995) Solution studies of cellulose tricarbanilates obtained in homogeneous phase. J Appl Polym Sci 55(12):1663–1671CrossRef
41.
go back to reference Kaida Y, Okamoto Y (1993) Optical resolution on regioselectively carbamoylated cellulose and amylose with 3,5-dimethylphenyl and 3,5-dichlorophenyl isocyanates. Bull Chem Soc Jpn 66(8):2225–2232CrossRef Kaida Y, Okamoto Y (1993) Optical resolution on regioselectively carbamoylated cellulose and amylose with 3,5-dimethylphenyl and 3,5-dichlorophenyl isocyanates. Bull Chem Soc Jpn 66(8):2225–2232CrossRef
42.
go back to reference Li WY, Jin AX, Liu CF, Sun RC, Zhang AP, Kennedy JF (2009) Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydr Polym 78(3):389–395CrossRef Li WY, Jin AX, Liu CF, Sun RC, Zhang AP, Kennedy JF (2009) Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydr Polym 78(3):389–395CrossRef
43.
go back to reference Wu CH, Kuo CY, Hong PKA, Chen MJ (2015) Removal of copper by surface-modified celluloses: kinetics, equilibrium, and thermodynamics. Desalin Water Treat 55(5):1253–1263 Wu CH, Kuo CY, Hong PKA, Chen MJ (2015) Removal of copper by surface-modified celluloses: kinetics, equilibrium, and thermodynamics. Desalin Water Treat 55(5):1253–1263
44.
go back to reference Schweiger RG (1972) Polysaccharide sulfates. I. Cellulose sulfate with a high degree of substitution. Carbohydr Res 27(2):219–228CrossRef Schweiger RG (1972) Polysaccharide sulfates. I. Cellulose sulfate with a high degree of substitution. Carbohydr Res 27(2):219–228CrossRef
45.
go back to reference Schönbein CF (1847) Notizübereine Veränderung der Pflanzenfaser und einiger andern organischen Substanzen (in German). Ber Natuforsch Ges Basel 7:27 Schönbein CF (1847) Notizübereine Veränderung der Pflanzenfaser und einiger andern organischen Substanzen (in German). Ber Natuforsch Ges Basel 7:27
46.
go back to reference Baiser K, Hoppe L, Eichler T, Wandel M, Astheimer HJ (1986) In: Gerhartz W, Yamamoto YS, Campbell FT, Pfefferkorn R, Rounsaville JF (eds) Ullmann’s encyclopedia of industrial chemistry, vol A5. VCH, Weinheim, pp 419–459 Baiser K, Hoppe L, Eichler T, Wandel M, Astheimer HJ (1986) In: Gerhartz W, Yamamoto YS, Campbell FT, Pfefferkorn R, Rounsaville JF (eds) Ullmann’s encyclopedia of industrial chemistry, vol A5. VCH, Weinheim, pp 419–459
47.
go back to reference Miles FD (1955) Cellulose nitrate, the physical chemistry of nitrocellulose, its formation and use. Oliver and Boyd, London Miles FD (1955) Cellulose nitrate, the physical chemistry of nitrocellulose, its formation and use. Oliver and Boyd, London
48.
go back to reference Schweiger RG (1974) Anhydrous solvent systems for cellulose processing. TAPPI J 57:86–90 Schweiger RG (1974) Anhydrous solvent systems for cellulose processing. TAPPI J 57:86–90
49.
go back to reference Wagenknecht W, Philipp B, Schleicher H, Beierlein L (1976) Untersuchungen zur Veresterung und Auoflosung der cellulose durch verschiedene Nitrosylverbindungen. Faserforsch Textiltech 27:111–117 Wagenknecht W, Philipp B, Schleicher H, Beierlein L (1976) Untersuchungen zur Veresterung und Auoflosung der cellulose durch verschiedene Nitrosylverbindungen. Faserforsch Textiltech 27:111–117
50.
go back to reference Nuessle C, Ford PM, Hall WP, Lippert AL (1956) Some aspects of the cellulose-phosphate-urea reaction. Text Res J 26(1):32–39CrossRef Nuessle C, Ford PM, Hall WP, Lippert AL (1956) Some aspects of the cellulose-phosphate-urea reaction. Text Res J 26(1):32–39CrossRef
51.
go back to reference Touey GP, Kingsport T (1956) Preparation of cellulose phosphates. Patent US 2759924 Touey GP, Kingsport T (1956) Preparation of cellulose phosphates. Patent US 2759924
52.
go back to reference Nehls L, Loth F (1991) 13C-NMR-spektroskopische Untersuchungen zur Phosphatierung von Celluloseprodukten im System H3PO4/Harnstoff. Acta Polym 42(5):233–235CrossRef Nehls L, Loth F (1991) 13C-NMR-spektroskopische Untersuchungen zur Phosphatierung von Celluloseprodukten im System H3PO4/Harnstoff. Acta Polym 42(5):233–235CrossRef
53.
go back to reference Granja PL, Pouysegu L, Deffieux D, Daude G, Dejeso B, Labrugere C, Baquey C, Barbosa MA (2001) Cellulose phosphates as biomaterials. II. Surface chemical modification of regenerated cellulose hydrogels. J Appl Polym Sci 82(13):3354–3365CrossRef Granja PL, Pouysegu L, Deffieux D, Daude G, Dejeso B, Labrugere C, Baquey C, Barbosa MA (2001) Cellulose phosphates as biomaterials. II. Surface chemical modification of regenerated cellulose hydrogels. J Appl Polym Sci 82(13):3354–3365CrossRef
54.
go back to reference Vigo TL, Welch CM (1973) Recent advances in reaction of cotton. Textilveredelung 8(3):93–97 Vigo TL, Welch CM (1973) Recent advances in reaction of cotton. Textilveredelung 8(3):93–97
55.
go back to reference Yuldashev A, Muratova UM, Askarov MA (1965) Phosphorylation of cotton cellulose by H3PO4 esters via chlorocellulose. Vysokomol Soedin 7(11):2109–2113 Yuldashev A, Muratova UM, Askarov MA (1965) Phosphorylation of cotton cellulose by H3PO4 esters via chlorocellulose. Vysokomol Soedin 7(11):2109–2113
56.
go back to reference Sano T, Shimomura T (1976) Method for manufacturing phosphorylated cellulose ester membranes for use in the separation or concentration of substances. US Patent US4083904 A Sano T, Shimomura T (1976) Method for manufacturing phosphorylated cellulose ester membranes for use in the separation or concentration of substances. US Patent US4083904 A
57.
go back to reference Illy N, Fache M, Ménard R, Negrell C, Caillol S, David G (2015) Phosphorylation of bio-based compounds: the state of the art. Polym Chem 6(35):6257–6291CrossRef Illy N, Fache M, Ménard R, Negrell C, Caillol S, David G (2015) Phosphorylation of bio-based compounds: the state of the art. Polym Chem 6(35):6257–6291CrossRef
58.
go back to reference Zheng Y, Song J, Cheng B, Fang X, Yuan Y (2016) Syntheses of flame-retardant cellulose esters and their fibers. Cellulose 17(1):1–8 Zheng Y, Song J, Cheng B, Fang X, Yuan Y (2016) Syntheses of flame-retardant cellulose esters and their fibers. Cellulose 17(1):1–8
59.
go back to reference Shutt TC (2000) Method for producing cellulose insulation materials using liquid borate fire retardant compositions. US Patent US6025027 A Shutt TC (2000) Method for producing cellulose insulation materials using liquid borate fire retardant compositions. US Patent US6025027 A
60.
go back to reference Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Volume II. Functionalization of cellulose. Wiley-VCH, WeinheimCrossRef Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Volume II. Functionalization of cellulose. Wiley-VCH, WeinheimCrossRef
61.
go back to reference Titkombe LA, Bremner JB, Burgar MI, Ridd MJ, French J, Maddern KN (1989) Evaluation of chemically modified cellulose from cotton linters. Appita 42(4):282–286 Titkombe LA, Bremner JB, Burgar MI, Ridd MJ, French J, Maddern KN (1989) Evaluation of chemically modified cellulose from cotton linters. Appita 42(4):282–286
62.
go back to reference Bohem RL (1958) Chlorination of cellulose with thionyl chloride in a pyridine medium. J Org Chem 23(11):1716–1720CrossRef Bohem RL (1958) Chlorination of cellulose with thionyl chloride in a pyridine medium. J Org Chem 23(11):1716–1720CrossRef
63.
go back to reference Polyakov AI, Rogovin ZA (1963) Synthesis of new cellulose derivatives–XXIII. Synthesis of chlorocellulose and its conversion products. Preparation of amino-and nitrilocellulose. Polym Sci USSR 4(4):610–618CrossRef Polyakov AI, Rogovin ZA (1963) Synthesis of new cellulose derivatives–XXIII. Synthesis of chlorocellulose and its conversion products. Preparation of amino-and nitrilocellulose. Polym Sci USSR 4(4):610–618CrossRef
64.
go back to reference Fumasoni S, Schippa G (1963) Chlorination of cellulose with thionyl chloride. Ann Chim Rome 53:894 Fumasoni S, Schippa G (1963) Chlorination of cellulose with thionyl chloride. Ann Chim Rome 53:894
65.
go back to reference Wagenknecht W, Philipp B, Schleicher H (1979) Zur veresterung und auflösung der cellulose mit säureanhydriden und säurechloriden des schwefels und phosphors. Acta Polym 30(2):108–112CrossRef Wagenknecht W, Philipp B, Schleicher H (1979) Zur veresterung und auflösung der cellulose mit säureanhydriden und säurechloriden des schwefels und phosphors. Acta Polym 30(2):108–112CrossRef
66.
go back to reference Furuhata K, Chang H-S, Aoki N, Sakamoto M (1992) Chlorination of cellulose with N-chlorosuccinimide-triphenylphosphine under homogeneous conditions in lithium chloride-N,N-dimethylacetamide. Carbohydr Res 230(1):151–164CrossRefPubMed Furuhata K, Chang H-S, Aoki N, Sakamoto M (1992) Chlorination of cellulose with N-chlorosuccinimide-triphenylphosphine under homogeneous conditions in lithium chloride-N,N-dimethylacetamide. Carbohydr Res 230(1):151–164CrossRefPubMed
67.
go back to reference Krylova RG (1987) Halogenodeoxy-derivatives of cellulose. Russ Chem Rev 56(1):97–105CrossRef Krylova RG (1987) Halogenodeoxy-derivatives of cellulose. Russ Chem Rev 56(1):97–105CrossRef
68.
go back to reference Tseng H, Furuhata K, Sakamoto M (1995) Bromination of regenerated chitin with N-bromosuccinimide and triphenylphosphine under homogeneous conditions in lithium bromide-N, N-dimethylacetamide. Carbohydr Res 270(2):149–161CrossRef Tseng H, Furuhata K, Sakamoto M (1995) Bromination of regenerated chitin with N-bromosuccinimide and triphenylphosphine under homogeneous conditions in lithium bromide-N, N-dimethylacetamide. Carbohydr Res 270(2):149–161CrossRef
69.
go back to reference Engelskirchen K (1987) Methoden der Organischen Chemie, vol E20. Georg Thieme, Houben-Weyl, Stuttgart, p 2126 Engelskirchen K (1987) Methoden der Organischen Chemie, vol E20. Georg Thieme, Houben-Weyl, Stuttgart, p 2126
70.
go back to reference Needs PW, Selvendran RR (1993) Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydr Res 245(1):1–10CrossRef Needs PW, Selvendran RR (1993) Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydr Res 245(1):1–10CrossRef
71.
go back to reference Voiges K, Adden R, Rinken M, Mischnick P (2012) Critical re-investigation of the alditol acetate method for analysis of substituent distribution in methyl cellulose. Cellulose 19(3):993–1004CrossRef Voiges K, Adden R, Rinken M, Mischnick P (2012) Critical re-investigation of the alditol acetate method for analysis of substituent distribution in methyl cellulose. Cellulose 19(3):993–1004CrossRef
72.
go back to reference Klemm D, Stein A (1995) Silylated cellulose materials in design of supramolecular structures of ultrathin cellulose films. J Macromol Sci Pure Appl Chem A32(4):899–904CrossRef Klemm D, Stein A (1995) Silylated cellulose materials in design of supramolecular structures of ultrathin cellulose films. J Macromol Sci Pure Appl Chem A32(4):899–904CrossRef
73.
go back to reference Mischnick P (1991) Determination of the substitution pattern of cellulose acetates. Carbohydr Chem 10(4):711–722CrossRef Mischnick P (1991) Determination of the substitution pattern of cellulose acetates. Carbohydr Chem 10(4):711–722CrossRef
74.
go back to reference Bock LH (1937) Water-soluble cellulose ethers. Ind Eng Chem 29(9):985–987CrossRef Bock LH (1937) Water-soluble cellulose ethers. Ind Eng Chem 29(9):985–987CrossRef
75.
go back to reference Camacho Gomez JA, Erler UW, Klemm DO (1996) Comprehensive cellulose chemistry. Macromol Chem Phys 797:953–964CrossRef Camacho Gomez JA, Erler UW, Klemm DO (1996) Comprehensive cellulose chemistry. Macromol Chem Phys 797:953–964CrossRef
76.
go back to reference Donges R (1990) Non-ionic cellulose ethers. Br Polym J 23(4):315–326 Donges R (1990) Non-ionic cellulose ethers. Br Polym J 23(4):315–326
77.
go back to reference Timell T (1950) Studies on cellulose reactions. Esselte Akt, Stockholm Timell T (1950) Studies on cellulose reactions. Esselte Akt, Stockholm
78.
go back to reference Basque P, de Gunzbourg A, Rondeau P, Ritcey AM (1996) Monolayers of cellulose ethers at the air-water interface. Langmuir 12(23):5614–5619CrossRef Basque P, de Gunzbourg A, Rondeau P, Ritcey AM (1996) Monolayers of cellulose ethers at the air-water interface. Langmuir 12(23):5614–5619CrossRef
79.
go back to reference Blasutto M, Delben F, Milost R, Painter TJ (1995) Novel cellulosic ethers with low degrees of substitution preparation and analysis of long-chain alkyl ethers. Carbohydr Polym 27(1):53–62CrossRef Blasutto M, Delben F, Milost R, Painter TJ (1995) Novel cellulosic ethers with low degrees of substitution preparation and analysis of long-chain alkyl ethers. Carbohydr Polym 27(1):53–62CrossRef
80.
go back to reference Keshipour S, Adak K (2017) Magnetic D-penicillamine-functionalized cellulose as a new heterogeneous support for cobalt(II) in green oxidation of ethylbenzene to acetophenone. Appl Organomet Chem 31(11):e337CrossRef Keshipour S, Adak K (2017) Magnetic D-penicillamine-functionalized cellulose as a new heterogeneous support for cobalt(II) in green oxidation of ethylbenzene to acetophenone. Appl Organomet Chem 31(11):e337CrossRef
81.
go back to reference Keshipour S, Kalam Khalteh N (2016) Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl Organomet Chem 30(8):653–656CrossRef Keshipour S, Kalam Khalteh N (2016) Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl Organomet Chem 30(8):653–656CrossRef
82.
go back to reference Asandei N, Perju N, Nicolescu R, Ciovica S (1995) Some aspects concerning the synthesis and properties of hydroxypropyl cellulose. Cellul Chem Technol 29(3):261–271 Asandei N, Perju N, Nicolescu R, Ciovica S (1995) Some aspects concerning the synthesis and properties of hydroxypropyl cellulose. Cellul Chem Technol 29(3):261–271
83.
go back to reference Dautzenberg H, Fanter C, Fink HP, Philipp B (1980) Strukturelle anderungen in cellulose-pulver bei der vernetzung mit epichlorhydrin. Cellul Chem Technol 14:633–653 Dautzenberg H, Fanter C, Fink HP, Philipp B (1980) Strukturelle anderungen in cellulose-pulver bei der vernetzung mit epichlorhydrin. Cellul Chem Technol 14:633–653
84.
go back to reference Diamantoglou M, Kuhne H (1988) Reaktionen von cellulose in homogener losung. Das Papier 42:690–696 Diamantoglou M, Kuhne H (1988) Reaktionen von cellulose in homogener losung. Das Papier 42:690–696
85.
go back to reference Baker TJ, Schroeder LR, Johnson DC (1981) Formation of methylol cellulose and its dissolution in polar aprotic solvents. Cellul Chem Technol 15:311–320 Baker TJ, Schroeder LR, Johnson DC (1981) Formation of methylol cellulose and its dissolution in polar aprotic solvents. Cellul Chem Technol 15:311–320
86.
go back to reference Kinstle JF, Irving NM (1983) Homogenous chemical modification of cellulose: further studies on the DMSD-PF solvent system. Polym Sci Technol 27:221–227 Kinstle JF, Irving NM (1983) Homogenous chemical modification of cellulose: further studies on the DMSD-PF solvent system. Polym Sci Technol 27:221–227
87.
go back to reference Ikeda L, Kurata S, Suzuki K (1990) In: 33rd IUPAC international symposium on macromolecules, Montreal, Abstracts Ikeda L, Kurata S, Suzuki K (1990) In: 33rd IUPAC international symposium on macromolecules, Montreal, Abstracts
88.
go back to reference Bikales NM (1974) Cyanoethylcellulose. Macromol Synth 5:35–38 Bikales NM (1974) Cyanoethylcellulose. Macromol Synth 5:35–38
89.
go back to reference Schleicher H, Lukanoff B, Philipp B (1974) Changes of cellulose accessibility to reactions in alkaline medium by activation with ammonia. Faserforsch Textiltech 47(1):251–260 Schleicher H, Lukanoff B, Philipp B (1974) Changes of cellulose accessibility to reactions in alkaline medium by activation with ammonia. Faserforsch Textiltech 47(1):251–260
90.
go back to reference Philipp B, Lukanoff B, Schleicher H, Wagenknecht WZ (1986) Homogene umsetzung an cellulose in organischen losemittelsystemen. Z Chem 26(2):50–58CrossRef Philipp B, Lukanoff B, Schleicher H, Wagenknecht WZ (1986) Homogene umsetzung an cellulose in organischen losemittelsystemen. Z Chem 26(2):50–58CrossRef
91.
go back to reference Englebretsen DR, Harding DRK (1992) Solid phase peptide synthesis on hydrophilic supports. Int J Pept Protein Res 40(6):487–496CrossRefPubMed Englebretsen DR, Harding DRK (1992) Solid phase peptide synthesis on hydrophilic supports. Int J Pept Protein Res 40(6):487–496CrossRefPubMed
92.
go back to reference Kubota H, Shigehisa Y (1995) Introduction of amidoxime groups into cellulose and its ability to adsorb metal ions. J Appl Polym Sci 56(2):147–151CrossRef Kubota H, Shigehisa Y (1995) Introduction of amidoxime groups into cellulose and its ability to adsorb metal ions. J Appl Polym Sci 56(2):147–151CrossRef
93.
go back to reference Hartman RJ, Fujiwara EJ (1961) Catalytic aminoethylation of cellulose, cellulose derivatives or polyvinyl alcohol. US Patent US2972606 A Hartman RJ, Fujiwara EJ (1961) Catalytic aminoethylation of cellulose, cellulose derivatives or polyvinyl alcohol. US Patent US2972606 A
94.
go back to reference Courtenay JC, Johns MA, Galembeck F, Lanzoni CDEM, Costa CA, Scott JL, Sharma RI (2017) Surface modified cellulose scaffolds for tissue engineering. Cellulose 24(1):253–267CrossRefPubMed Courtenay JC, Johns MA, Galembeck F, Lanzoni CDEM, Costa CA, Scott JL, Sharma RI (2017) Surface modified cellulose scaffolds for tissue engineering. Cellulose 24(1):253–267CrossRefPubMed
95.
go back to reference Das G, Park BJ, Yoon HH (2016) A bionanocomposite based on 1,4-diazabicyclo-[2,2,2]-octane cellulose nanofiber cross-linked-quaternary polysulfone as an anion conducting membrane. J Mater Chem A 4(40):15554–15564CrossRef Das G, Park BJ, Yoon HH (2016) A bionanocomposite based on 1,4-diazabicyclo-[2,2,2]-octane cellulose nanofiber cross-linked-quaternary polysulfone as an anion conducting membrane. J Mater Chem A 4(40):15554–15564CrossRef
96.
go back to reference Donia AM, Atia AA, Yousif SS (2013) Efficient adsorption of Cu(II) and Hg(II) from their aqueous solutions using amine functionalized cellulose. J Dispers Sci Technol 34(9):1230–1239CrossRef Donia AM, Atia AA, Yousif SS (2013) Efficient adsorption of Cu(II) and Hg(II) from their aqueous solutions using amine functionalized cellulose. J Dispers Sci Technol 34(9):1230–1239CrossRef
97.
go back to reference Keshipour S, Shojaei S, Shaabani A (2013) Palladium nano-particles supported on ethylenediamine-functionalized cellulose as a novel and efficient catalyst for the Heck and Sonogashira couplings in water. Cellulose 20(2):973–980CrossRef Keshipour S, Shojaei S, Shaabani A (2013) Palladium nano-particles supported on ethylenediamine-functionalized cellulose as a novel and efficient catalyst for the Heck and Sonogashira couplings in water. Cellulose 20(2):973–980CrossRef
98.
go back to reference Keshipour S, Shaabani A (2014) Copper(I) and palladium nanoparticles supported on ethylenediamine-functionalized cellulose as an efficient catalyst for the 1,3-dipolar cycloaddition/direct arylation sequence. Appl Organomet Chem 28(2):116–119CrossRef Keshipour S, Shaabani A (2014) Copper(I) and palladium nanoparticles supported on ethylenediamine-functionalized cellulose as an efficient catalyst for the 1,3-dipolar cycloaddition/direct arylation sequence. Appl Organomet Chem 28(2):116–119CrossRef
99.
go back to reference Shaabani A, Keshipour S, Hamidzad M, Seyyedhamzeh M (2014) Cobalt(II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols. J Chem Sci 126(1):111–115CrossRef Shaabani A, Keshipour S, Hamidzad M, Seyyedhamzeh M (2014) Cobalt(II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols. J Chem Sci 126(1):111–115CrossRef
100.
go back to reference Ahmar H, Keshipour S, Hosseini H, Fakhari AR, Shaabani A, Bagheri A (2013) Electrocatalytic oxidation of hydrazine at glassy carbon electrode modified with ethylenediamine cellulose immobilized palladium nanoparticles. J Electroanal Chem 690:96–103CrossRef Ahmar H, Keshipour S, Hosseini H, Fakhari AR, Shaabani A, Bagheri A (2013) Electrocatalytic oxidation of hydrazine at glassy carbon electrode modified with ethylenediamine cellulose immobilized palladium nanoparticles. J Electroanal Chem 690:96–103CrossRef
101.
go back to reference Yu A, Shang J, Cheng F, Paik BA, Kaplan JM, Andrade RB, Ratner DM (2012) Biofunctional paper via the covalent modification of cellulose. Langmuir 28(30):11265–11273CrossRefPubMedPubMedCentral Yu A, Shang J, Cheng F, Paik BA, Kaplan JM, Andrade RB, Ratner DM (2012) Biofunctional paper via the covalent modification of cellulose. Langmuir 28(30):11265–11273CrossRefPubMedPubMedCentral
102.
go back to reference Hu H, You J, Gan W, Zhou J, Zhang L (2015) Synthesis of allyl cellulose in NaOH/urea aqueous solutions and its thiol-ene click reactions. Polym Chem 6(18):3543–3548CrossRef Hu H, You J, Gan W, Zhou J, Zhang L (2015) Synthesis of allyl cellulose in NaOH/urea aqueous solutions and its thiol-ene click reactions. Polym Chem 6(18):3543–3548CrossRef
103.
go back to reference Tingaut P, Hauert R, Zimmermann T (2011) Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry. J Mater Chem 21(40):16066–16076CrossRef Tingaut P, Hauert R, Zimmermann T (2011) Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry. J Mater Chem 21(40):16066–16076CrossRef
104.
go back to reference Koenig HS, Roberts CW (1974) Vinylbenzyl ethers of cellulose preparation and polymerization. J Appl Polym Sci 18(3):651–666CrossRef Koenig HS, Roberts CW (1974) Vinylbenzyl ethers of cellulose preparation and polymerization. J Appl Polym Sci 18(3):651–666CrossRef
105.
go back to reference Frazier C, Glasser WG (1995) Intramolecular effects in cellulose mixed benzyl ethers blended with poly(ε-caprolactone). J Appl Polym Sci 58(6):1063–1075CrossRef Frazier C, Glasser WG (1995) Intramolecular effects in cellulose mixed benzyl ethers blended with poly(ε-caprolactone). J Appl Polym Sci 58(6):1063–1075CrossRef
106.
go back to reference Harkness BR, Gray DG (1991) Chiroptical properties of 6-o-alpha-(1-naphthylmethyl)-2,3-di-o-pentylcellulose. Macromolecules 24(8):1800–1805CrossRef Harkness BR, Gray DG (1991) Chiroptical properties of 6-o-alpha-(1-naphthylmethyl)-2,3-di-o-pentylcellulose. Macromolecules 24(8):1800–1805CrossRef
107.
go back to reference Isogai A, Ishizu A, Nakano J (1985) Thermal and structural properties of tri-o-substituted cellulose ethers. J Appl Polym Sci 30(1):345–353CrossRef Isogai A, Ishizu A, Nakano J (1985) Thermal and structural properties of tri-o-substituted cellulose ethers. J Appl Polym Sci 30(1):345–353CrossRef
108.
go back to reference Zhadanov YA, Aleksoeev YE, Alekseeva VG (1993) Chemical modification of cellulose in a superbase medium. Vysokomol Soedin A 3(9):1436–1441 Zhadanov YA, Aleksoeev YE, Alekseeva VG (1993) Chemical modification of cellulose in a superbase medium. Vysokomol Soedin A 3(9):1436–1441
109.
go back to reference Helfrich B, Koester H (1924) Ather des triphenyl-carbinols mit cellulose und starke. Ber Dtsch Chem Ges 57(3):587–591CrossRef Helfrich B, Koester H (1924) Ather des triphenyl-carbinols mit cellulose und starke. Ber Dtsch Chem Ges 57(3):587–591CrossRef
110.
go back to reference Hearon WM, Hiatt GD, Fordyce CR (1943) Cellulose trityl ether1a. Am Chem Soc 65(12):2449–2452CrossRef Hearon WM, Hiatt GD, Fordyce CR (1943) Cellulose trityl ether1a. Am Chem Soc 65(12):2449–2452CrossRef
111.
go back to reference Schuyten HA, Weaver JW, Reid JD, Jurgens JF (1948) Trimethylsilylcellulose. J Am Chem Soc 70(5):1919CrossRefPubMed Schuyten HA, Weaver JW, Reid JD, Jurgens JF (1948) Trimethylsilylcellulose. J Am Chem Soc 70(5):1919CrossRefPubMed
112.
go back to reference Petzold K, Koschella A, Klemm D, Heublein B (2003) Silylation of cellulose and starch – selectivity, structure analysis, and subsequent reactions. Cellulose 10(30):251–269CrossRef Petzold K, Koschella A, Klemm D, Heublein B (2003) Silylation of cellulose and starch – selectivity, structure analysis, and subsequent reactions. Cellulose 10(30):251–269CrossRef
113.
go back to reference Green JG (1983) Trimethylsilylation of cellulose. Patent US Patent 4390692A Green JG (1983) Trimethylsilylation of cellulose. Patent US Patent 4390692A
114.
go back to reference Koga H, Kitaoka T, Isogai A (2011) In situ modification of cellulose paper with amino groups for catalytic applications. J Mater Chem 21(25):9356–9361CrossRef Koga H, Kitaoka T, Isogai A (2011) In situ modification of cellulose paper with amino groups for catalytic applications. J Mater Chem 21(25):9356–9361CrossRef
115.
go back to reference Hassan ML, Moorefoeild CM, Elbatal HS, Newkome GR (2012) New metallo-supramolecular terpyridine-modified cellulose functional nanomaterials. J Macromol Sci A Pure Appl Chem 49(4):298–305CrossRef Hassan ML, Moorefoeild CM, Elbatal HS, Newkome GR (2012) New metallo-supramolecular terpyridine-modified cellulose functional nanomaterials. J Macromol Sci A Pure Appl Chem 49(4):298–305CrossRef
116.
go back to reference Chen J, Lin N, Huang J, Dufresne A (2015) Highly alkynyl-functionalization of cellulose nanocrystals and advanced nanocomposites there of click chemistry. Polym Chem 6(24):4385–4395CrossRef Chen J, Lin N, Huang J, Dufresne A (2015) Highly alkynyl-functionalization of cellulose nanocrystals and advanced nanocomposites there of click chemistry. Polym Chem 6(24):4385–4395CrossRef
117.
go back to reference d’Halluin M, Rull-Barrull J, Le Grognec E, Jacquemin D, Felpin FX (2016) Writing and erasing hidden optical information on covalently modified cellulose paper. Chem Commun 52(49):7672–7675CrossRef d’Halluin M, Rull-Barrull J, Le Grognec E, Jacquemin D, Felpin FX (2016) Writing and erasing hidden optical information on covalently modified cellulose paper. Chem Commun 52(49):7672–7675CrossRef
118.
go back to reference Eyleya S, Thielemans W (2011) Imidazolium grafted cellulose nanocrystals for ion exchange applications. Chem Commun 47(14):4177–4179CrossRef Eyleya S, Thielemans W (2011) Imidazolium grafted cellulose nanocrystals for ion exchange applications. Chem Commun 47(14):4177–4179CrossRef
119.
go back to reference Hettegger H, Beaumont M, Potthast A, Rosenau T (2016) Aqueous modification of nano- and microfibrillar cellulose with a click synthon. ChemSusChem 9(1):75–79CrossRefPubMed Hettegger H, Beaumont M, Potthast A, Rosenau T (2016) Aqueous modification of nano- and microfibrillar cellulose with a click synthon. ChemSusChem 9(1):75–79CrossRefPubMed
120.
go back to reference Junka K, Filpponen I, Johansson LS, Kontturi E, Rojas OJ, Laine J (2014) A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydr Polym 100:107–115CrossRefPubMed Junka K, Filpponen I, Johansson LS, Kontturi E, Rojas OJ, Laine J (2014) A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydr Polym 100:107–115CrossRefPubMed
121.
go back to reference Xie K, Liu H, Wang X (2009) Surface modification of cellulose with triazine derivative to improve printability with reactive dyes. Carbohydr Polym 78(3):538–542CrossRef Xie K, Liu H, Wang X (2009) Surface modification of cellulose with triazine derivative to improve printability with reactive dyes. Carbohydr Polym 78(3):538–542CrossRef
122.
go back to reference Shaabani A, Keshipour S, Hamidzad M, Shaabani S (2014) Cobalt(II) phthalocyanine anchored to cellulose as a recoverable and efficient catalyst for the aerobic oxidation of alkyl arenes and alcohols. J Mol Catal A Chem 395:494–499CrossRef Shaabani A, Keshipour S, Hamidzad M, Shaabani S (2014) Cobalt(II) phthalocyanine anchored to cellulose as a recoverable and efficient catalyst for the aerobic oxidation of alkyl arenes and alcohols. J Mol Catal A Chem 395:494–499CrossRef
123.
go back to reference Keshipour S, Adak K (2016) Pd(0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics. RSC Adv 6(92):89407–89412CrossRef Keshipour S, Adak K (2016) Pd(0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics. RSC Adv 6(92):89407–89412CrossRef
124.
go back to reference Hokkanen S, Repo E, Bhatnagar A, Tang WZ, Sillanpaa M (2014) Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose. Environ Technol 35(18):2334–2346CrossRefPubMed Hokkanen S, Repo E, Bhatnagar A, Tang WZ, Sillanpaa M (2014) Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose. Environ Technol 35(18):2334–2346CrossRefPubMed
125.
go back to reference Brauncker WA, Matyjaszewski K (2007) Controlled/living polymerization: features, developments, and perspective. Prog Polym Sci 32(1):93–146CrossRef Brauncker WA, Matyjaszewski K (2007) Controlled/living polymerization: features, developments, and perspective. Prog Polym Sci 32(1):93–146CrossRef
126.
go back to reference Carlmark A, Malmström EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4(6):1740–1745CrossRefPubMed Carlmark A, Malmström EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4(6):1740–1745CrossRefPubMed
127.
go back to reference Coskun M, Temuz MM (2005) Grafting studies onto cellulose by atom-transfer radical polymerization. Polym Int 54(2):342–347CrossRef Coskun M, Temuz MM (2005) Grafting studies onto cellulose by atom-transfer radical polymerization. Polym Int 54(2):342–347CrossRef
128.
go back to reference Ifuku S, Kadla JF (2008) Preparation of a thermosensitive highly regioselective cellulose/N-isopropylacrylamine copolymer through atom transfer radical polymerization. Biomacromolecules 9(11):3308–3313CrossRefPubMed Ifuku S, Kadla JF (2008) Preparation of a thermosensitive highly regioselective cellulose/N-isopropylacrylamine copolymer through atom transfer radical polymerization. Biomacromolecules 9(11):3308–3313CrossRefPubMed
129.
go back to reference Hiltunen M, Siirila J, Aseyev V, Maunu SL (2012) Cellulose-g-PDMAam copolymers by controlled radical polymerization in homogeneous medium and their aqueous solution properties. Eur Polym J 48(1):136–145CrossRef Hiltunen M, Siirila J, Aseyev V, Maunu SL (2012) Cellulose-g-PDMAam copolymers by controlled radical polymerization in homogeneous medium and their aqueous solution properties. Eur Polym J 48(1):136–145CrossRef
130.
go back to reference Hiltunen MS, Raula J, Maunu SL (2011) Tailoring of water-soluble cellulose-g-copolymers in homogeneous medium using single-electron-transfer living radical polymerization. Polym Int 60(9):1370–1379 Hiltunen MS, Raula J, Maunu SL (2011) Tailoring of water-soluble cellulose-g-copolymers in homogeneous medium using single-electron-transfer living radical polymerization. Polym Int 60(9):1370–1379
131.
go back to reference Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8):2997–3006CrossRefPubMed Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8):2997–3006CrossRefPubMed
132.
go back to reference Sui XF, Yuan JY, Zhou M, Zhang J, Yang HJ, Yuan WZ (2008) Synthesis of cellulose-graft-poly(N,N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media. Biomacromolecules 9(10):2615–2620CrossRefPubMed Sui XF, Yuan JY, Zhou M, Zhang J, Yang HJ, Yuan WZ (2008) Synthesis of cellulose-graft-poly(N,N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media. Biomacromolecules 9(10):2615–2620CrossRefPubMed
133.
go back to reference Meng T, Gao X, Zhang J, Yuan JY, Zhang YZ, He JS (2009) Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer 50(2):447–454CrossRef Meng T, Gao X, Zhang J, Yuan JY, Zhang YZ, He JS (2009) Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer 50(2):447–454CrossRef
134.
go back to reference Yan LF, Ishihara K (2008) Graft copolymerization of 2-methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing new hemocompatible coating materials. J Polym Sci Polym Chem 46(10):3306–3313CrossRef Yan LF, Ishihara K (2008) Graft copolymerization of 2-methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing new hemocompatible coating materials. J Polym Sci Polym Chem 46(10):3306–3313CrossRef
135.
go back to reference Lin CX, Zhan HY, Liu MH, Fu SY, Zhang JJ (2009) Preparation of cellulose graft poly (methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydr Polym 78(3):432–438CrossRef Lin CX, Zhan HY, Liu MH, Fu SY, Zhang JJ (2009) Preparation of cellulose graft poly (methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydr Polym 78(3):432–438CrossRef
136.
go back to reference Chang FX, Yamabuki K, Onimura K, Oishi T (2008) Modification of cellulose by using atom transfer radical polymerization and ring-opening polymerization. Polym J 40(12):1170–1179CrossRef Chang FX, Yamabuki K, Onimura K, Oishi T (2008) Modification of cellulose by using atom transfer radical polymerization and ring-opening polymerization. Polym J 40(12):1170–1179CrossRef
137.
go back to reference Zhong JF, Chai XS, Fu SY (2012) Homogeneous grafting poly(methyl methacrylate) on cellulose by atom transfer radical polymerization. Carbohydr Polym 87(2):1869–1873CrossRef Zhong JF, Chai XS, Fu SY (2012) Homogeneous grafting poly(methyl methacrylate) on cellulose by atom transfer radical polymerization. Carbohydr Polym 87(2):1869–1873CrossRef
138.
go back to reference Cui GH, Li YH, Shi TT, Gao ZG, Qiu NN, Satoh T (2013) Synthesis and characterization of Eu(III) complexes of modified cellulose and poly(N-isopropylacrylamide). Carbohydr Polym 94(1):77–81CrossRefPubMed Cui GH, Li YH, Shi TT, Gao ZG, Qiu NN, Satoh T (2013) Synthesis and characterization of Eu(III) complexes of modified cellulose and poly(N-isopropylacrylamide). Carbohydr Polym 94(1):77–81CrossRefPubMed
139.
go back to reference Xiao MM, Li SZ, Chanklin W, Zheng AN, Xiao HN (2011) Surface-initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83(2):512–519CrossRef Xiao MM, Li SZ, Chanklin W, Zheng AN, Xiao HN (2011) Surface-initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym 83(2):512–519CrossRef
140.
go back to reference Pan K, Zhang X, Ren R, Cao B (2010) Double stimuli-responsive membranes grafted with block copolymer by ATRP method. J Membr Sci 356(1–2):133–137CrossRef Pan K, Zhang X, Ren R, Cao B (2010) Double stimuli-responsive membranes grafted with block copolymer by ATRP method. J Membr Sci 356(1–2):133–137CrossRef
141.
go back to reference Singh N, Chen Z, Tomer N, Wickramasinghe SR, Soice N, Husson SM (2008) Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization. J Membr Sci 311(1–2):225–234CrossRef Singh N, Chen Z, Tomer N, Wickramasinghe SR, Soice N, Husson SM (2008) Modification of regenerated cellulose ultrafiltration membranes by surface-initiated atom transfer radical polymerization. J Membr Sci 311(1–2):225–234CrossRef
142.
go back to reference Liu PS, Chen Q, Liu X, Yuan B, Wu SS, Shen J, Lin SC (2009) Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility. Biomacromolecules 10(10):2809–2816CrossRefPubMed Liu PS, Chen Q, Liu X, Yuan B, Wu SS, Shen J, Lin SC (2009) Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility. Biomacromolecules 10(10):2809–2816CrossRefPubMed
143.
go back to reference Wei YT, Zheng YM, Chen JP (2011) Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution. Langmuir 27(10):6018–6025CrossRefPubMed Wei YT, Zheng YM, Chen JP (2011) Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution. Langmuir 27(10):6018–6025CrossRefPubMed
144.
go back to reference Pan K, Zhang XW, Zhu J, Cao B (2011) Grafting of regenerated cellulose membrane by surface-initiated atom transfer radical polymerization and its pH-responsive behavior. Polym Adv Technol 22(12):1948–1952CrossRef Pan K, Zhang XW, Zhu J, Cao B (2011) Grafting of regenerated cellulose membrane by surface-initiated atom transfer radical polymerization and its pH-responsive behavior. Polym Adv Technol 22(12):1948–1952CrossRef
145.
go back to reference Wang M, Yuan J, Huang XB, Cai XM, Li L, Shen J (2013) Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Colloids Surf B Biointerfaces 103:52–58CrossRefPubMed Wang M, Yuan J, Huang XB, Cai XM, Li L, Shen J (2013) Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Colloids Surf B Biointerfaces 103:52–58CrossRefPubMed
146.
go back to reference Liu PS, Chen Q, Wu SS, Shen J, Lin SC (2010) Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J Membr Sci 350(1):387–394CrossRef Liu PS, Chen Q, Wu SS, Shen J, Lin SC (2010) Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J Membr Sci 350(1):387–394CrossRef
147.
go back to reference Qian X, Fan H, Wang C, Wei Y (2013) Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly (glycidyl methacrylate) and subsequent derivatization with diethylamine. Appl Surf Sci 271:240–247CrossRef Qian X, Fan H, Wang C, Wei Y (2013) Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly (glycidyl methacrylate) and subsequent derivatization with diethylamine. Appl Surf Sci 271:240–247CrossRef
148.
go back to reference Lindqvist J, Malmström E (2006) Surface modification of natural substrates by atom transferradical polymerization. J Appl Polym Sci 100(5):4155–4162CrossRef Lindqvist J, Malmström E (2006) Surface modification of natural substrates by atom transferradical polymerization. J Appl Polym Sci 100(5):4155–4162CrossRef
149.
go back to reference Qiu XY, Ren XQ, Hu SW (2013) Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP. Carbohydr Polym 92(2):1887–1895CrossRefPubMed Qiu XY, Ren XQ, Hu SW (2013) Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP. Carbohydr Polym 92(2):1887–1895CrossRefPubMed
150.
go back to reference Singh N, Wang J, Ulbricht M, Wickramasinghe SR, Husson SM (2008) Surface-initiated atom transfer radical polymerization: a new method for preparation of polymeric membrane adsorbers. J Membr Sci 309(1):64–72CrossRef Singh N, Wang J, Ulbricht M, Wickramasinghe SR, Husson SM (2008) Surface-initiated atom transfer radical polymerization: a new method for preparation of polymeric membrane adsorbers. J Membr Sci 309(1):64–72CrossRef
151.
go back to reference Jiang M, Wang J, Li L, Pan K, Cao B (2013) Poly (N, N-dimethylaminoethyl methacrylate) modification of a regenerated cellulose membrane using ATRP method for copper (II) ion removal. RSC Adv 3(43):20625–20632CrossRef Jiang M, Wang J, Li L, Pan K, Cao B (2013) Poly (N, N-dimethylaminoethyl methacrylate) modification of a regenerated cellulose membrane using ATRP method for copper (II) ion removal. RSC Adv 3(43):20625–20632CrossRef
152.
go back to reference Bhut BV, Conrad KA, Husson SM (2012) Preparation of high-performance membrane adsorbers by surface-initiated AGET ATRP in the presence of dissolved oxygen and low catalyst concentration. J Membr Sci 390:43–47CrossRef Bhut BV, Conrad KA, Husson SM (2012) Preparation of high-performance membrane adsorbers by surface-initiated AGET ATRP in the presence of dissolved oxygen and low catalyst concentration. J Membr Sci 390:43–47CrossRef
153.
go back to reference Wei Y, Ma J, Wang C (2013) Preparation of high-capacity strong cation exchange membrane for protein adsorption via surface-initiated atom transfer radical polymerization. J Membr Sci 427:197–206CrossRef Wei Y, Ma J, Wang C (2013) Preparation of high-capacity strong cation exchange membrane for protein adsorption via surface-initiated atom transfer radical polymerization. J Membr Sci 427:197–206CrossRef
154.
go back to reference Yi J, Xu Q, Zhang X, Zhang H (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly (styrene) in both thermotropic and lyotropic states. Polymer 49(20):4406–4412CrossRef Yi J, Xu Q, Zhang X, Zhang H (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly (styrene) in both thermotropic and lyotropic states. Polymer 49(20):4406–4412CrossRef
155.
go back to reference Hemraz UD, Lu A, Sunasee R, Boluk Y (2014) Structure of poly (N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. J Colloid Interface Sci 430:157–165CrossRefPubMed Hemraz UD, Lu A, Sunasee R, Boluk Y (2014) Structure of poly (N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. J Colloid Interface Sci 430:157–165CrossRefPubMed
156.
go back to reference Yi J, Xu QX, Zhang XF, Zhang HL (2009) Temperature-induced chiral nematic phase changes of suspensions of poly (N, N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16(6):989CrossRef Yi J, Xu QX, Zhang XF, Zhang HL (2009) Temperature-induced chiral nematic phase changes of suspensions of poly (N, N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16(6):989CrossRef
157.
go back to reference Hemraz UD, Campbell KA, Burdick JS, Ckless K, Boluk Y, Sunasee R (2014) Cationic poly (2-aminoethylmethacrylate) and poly (N-(2-aminoethylmethacrylamide)) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity. Biomacromolecules 16(1):319–325CrossRefPubMed Hemraz UD, Campbell KA, Burdick JS, Ckless K, Boluk Y, Sunasee R (2014) Cationic poly (2-aminoethylmethacrylate) and poly (N-(2-aminoethylmethacrylamide)) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity. Biomacromolecules 16(1):319–325CrossRefPubMed
158.
go back to reference Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286CrossRefPubMed Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286CrossRefPubMed
159.
go back to reference Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212CrossRefPubMed Yin Y, Tian X, Jiang X, Wang H, Gao W (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212CrossRefPubMed
160.
go back to reference Wang Z, Zhang YQ, Jiang F, Fang HG, Wang ZG (2014) Synthesis and characterization of designed cellulose-graft-polyisoprene copolymers. Polym Chem 5(10):3379–3388CrossRef Wang Z, Zhang YQ, Jiang F, Fang HG, Wang ZG (2014) Synthesis and characterization of designed cellulose-graft-polyisoprene copolymers. Polym Chem 5(10):3379–3388CrossRef
161.
go back to reference Glaied O, Dube M, Chabot B, Daneault C (2009) Synthesis of cationic polymer-grafted cellulose by aqueous ATRP. J Colloid Interface Sci 333(1):145–151CrossRefPubMed Glaied O, Dube M, Chabot B, Daneault C (2009) Synthesis of cationic polymer-grafted cellulose by aqueous ATRP. J Colloid Interface Sci 333(1):145–151CrossRefPubMed
162.
go back to reference Castelvetro V, Geppi M, Giaiacopi S, Mollica G (2007) Cotton fibers encapsulated with homo-and block copolymers: synthesis by the atom transfer radical polymerization grafting-from technique and solid-state NMR dynamic investigations. Biomacromolecules 8(2):498–508CrossRefPubMed Castelvetro V, Geppi M, Giaiacopi S, Mollica G (2007) Cotton fibers encapsulated with homo-and block copolymers: synthesis by the atom transfer radical polymerization grafting-from technique and solid-state NMR dynamic investigations. Biomacromolecules 8(2):498–508CrossRefPubMed
163.
go back to reference Zheng Y, Deng SB, Niu L, Xu FJ, Chai MY, Yu G (2011) Functionalized cotton via surface-initiated atom transfer radical polymerization for enhanced sorption of Cu (II) and Pb (II). J Hazard Mater 192(3):1401–1408CrossRefPubMed Zheng Y, Deng SB, Niu L, Xu FJ, Chai MY, Yu G (2011) Functionalized cotton via surface-initiated atom transfer radical polymerization for enhanced sorption of Cu (II) and Pb (II). J Hazard Mater 192(3):1401–1408CrossRefPubMed
164.
go back to reference Hansson S, Ostmark E, Carlmark A, Malmstrom E (2009) ARGET ATRP for versatile grafting of cellulose using various monomers. ACS Appl Mater Interfaces 1(11):2651–2659CrossRefPubMed Hansson S, Ostmark E, Carlmark A, Malmstrom E (2009) ARGET ATRP for versatile grafting of cellulose using various monomers. ACS Appl Mater Interfaces 1(11):2651–2659CrossRefPubMed
165.
go back to reference Lindqvist J, Nystrom D, Ostmark E, Antoni P, Carlmark A, Johansson M, Hult A, Malmstrom E (2008) Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP. Biomacromolecules 9(8):2139–2145CrossRefPubMed Lindqvist J, Nystrom D, Ostmark E, Antoni P, Carlmark A, Johansson M, Hult A, Malmstrom E (2008) Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP. Biomacromolecules 9(8):2139–2145CrossRefPubMed
166.
go back to reference Westlund R, Carlmark A, Hult A, Malmstrom E, Saez IM (2007) Grafting liquid crystalline polymers from cellulose substrates using atom transfer radical polymerization. Soft Matter 3(7):866–871CrossRefPubMed Westlund R, Carlmark A, Hult A, Malmstrom E, Saez IM (2007) Grafting liquid crystalline polymers from cellulose substrates using atom transfer radical polymerization. Soft Matter 3(7):866–871CrossRefPubMed
167.
go back to reference Nyström D, Lindqvist J, Ostmark E, Hult A, Malmstrom E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun (34):3594–3596 Nyström D, Lindqvist J, Ostmark E, Hult A, Malmstrom E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun (34):3594–3596
168.
go back to reference Tang F, Zhang LF, Zhang ZB, Cheng ZP, Zhu XL (2009) Cellulose filter paper with antibacterial activity from surface-initiated ATRP. J Macromol Sci 46(10):989–996CrossRef Tang F, Zhang LF, Zhang ZB, Cheng ZP, Zhu XL (2009) Cellulose filter paper with antibacterial activity from surface-initiated ATRP. J Macromol Sci 46(10):989–996CrossRef
169.
go back to reference Liu ZT, Sun C, Liu ZW, Lu J (2008) Adjustable wettability of methyl methacrylate modified ramie fiber. J Appl Polym 109(5):2888–2894CrossRef Liu ZT, Sun C, Liu ZW, Lu J (2008) Adjustable wettability of methyl methacrylate modified ramie fiber. J Appl Polym 109(5):2888–2894CrossRef
170.
go back to reference Liu ZT, Sun CA, Liu ZW, Lu J (2009) Modification of ramie fiber with an amine-containing polymer via atom transfer radical polymerization. J Appl Polym 113(6):3612–3618CrossRef Liu ZT, Sun CA, Liu ZW, Lu J (2009) Modification of ramie fiber with an amine-containing polymer via atom transfer radical polymerization. J Appl Polym 113(6):3612–3618CrossRef
171.
go back to reference Plackett D, Jankova K, Egsgaard H, Hvilsted S (2005) Modification of jute fibers with polystyrene via atom transfer radical polymerization. Biomacromolecules 6(5):2474–2484CrossRefPubMed Plackett D, Jankova K, Egsgaard H, Hvilsted S (2005) Modification of jute fibers with polystyrene via atom transfer radical polymerization. Biomacromolecules 6(5):2474–2484CrossRefPubMed
172.
go back to reference Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition − fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562CrossRef Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition − fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562CrossRef
173.
go back to reference Charmot D, Corpart P, Adam H, Zard SZ, Biadatti T, Bouhadir G (2000) Controlled radical polymerization in dispersed media. Macromol Symp 150(1):23–32CrossRef Charmot D, Corpart P, Adam H, Zard SZ, Biadatti T, Bouhadir G (2000) Controlled radical polymerization in dispersed media. Macromol Symp 150(1):23–32CrossRef
174.
go back to reference Goldmann AS, Tischer T, Barner L, Bruns M, Barner-Kowollik C (2011) Mild and modular surface modification of cellulose via Hetero Diels−Alder (HDA) cycloaddition. Biomacromolecules 12(4):1137–1145CrossRefPubMed Goldmann AS, Tischer T, Barner L, Bruns M, Barner-Kowollik C (2011) Mild and modular surface modification of cellulose via Hetero Diels−Alder (HDA) cycloaddition. Biomacromolecules 12(4):1137–1145CrossRefPubMed
175.
go back to reference Barsbay M, Guven O, Davis TP, Barner-Kowollik C, Barner L (2009) RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation. Polymer 50(4):973–982CrossRef Barsbay M, Guven O, Davis TP, Barner-Kowollik C, Barner L (2009) RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation. Polymer 50(4):973–982CrossRef
176.
go back to reference Roy D, Guthrie JT, Perrier S (2008) Synthesis of natural–synthetic hybrid materials from cellulose via the RAFT process. Soft Matter 4(1):145–155CrossRef Roy D, Guthrie JT, Perrier S (2008) Synthesis of natural–synthetic hybrid materials from cellulose via the RAFT process. Soft Matter 4(1):145–155CrossRef
177.
go back to reference Roy D, Knapp JS, Guthrie JT, Perrier S (2007) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9(1):91–99CrossRefPubMed Roy D, Knapp JS, Guthrie JT, Perrier S (2007) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9(1):91–99CrossRefPubMed
178.
go back to reference Barsbay M, Guven G, Stenzel MH, Davis TP, Barner-Kowollik C, Barner L (2007) Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40(20):7140–7147CrossRef Barsbay M, Guven G, Stenzel MH, Davis TP, Barner-Kowollik C, Barner L (2007) Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40(20):7140–7147CrossRef
179.
go back to reference Barsbay M, Kodama Y, Güven O (2014) Functionalization of cellulose with epoxy groups via γ-initiated RAFT-mediated grafting of glycidyl methacrylate. Cellulose 21(6):4067–4079CrossRef Barsbay M, Kodama Y, Güven O (2014) Functionalization of cellulose with epoxy groups via γ-initiated RAFT-mediated grafting of glycidyl methacrylate. Cellulose 21(6):4067–4079CrossRef
180.
go back to reference Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly (styrene) from cellulose via reversible addition−fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25):10363–10372CrossRef Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly (styrene) from cellulose via reversible addition−fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25):10363–10372CrossRef
181.
go back to reference Takolpuckdee P, Westwood J, Lewis DM, Perrier S (2004) Polymer architectures via reversible addition fragmentation chain transfer (RAFT) polymerization. Macromol Symp 216(1):23–35CrossRef Takolpuckdee P, Westwood J, Lewis DM, Perrier S (2004) Polymer architectures via reversible addition fragmentation chain transfer (RAFT) polymerization. Macromol Symp 216(1):23–35CrossRef
182.
go back to reference Perrier S, Takolpuckdee P, Westwood J, Lewis DM (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37(8):2709–2717CrossRef Perrier S, Takolpuckdee P, Westwood J, Lewis DM (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37(8):2709–2717CrossRef
183.
go back to reference Chen J, Yi J, Sun P, Liu ZT, Liu ZW (2009) Grafting from ramie fiber with poly (MMA) or poly (MA) via reversible addition-fragmentation chain transfer polymerization. Cellulose 16(6):1133–1145CrossRef Chen J, Yi J, Sun P, Liu ZT, Liu ZW (2009) Grafting from ramie fiber with poly (MMA) or poly (MA) via reversible addition-fragmentation chain transfer polymerization. Cellulose 16(6):1133–1145CrossRef
184.
go back to reference Yi J, Chen J, Liu ZT, Liu ZW (2010) Grafting of polystyrene and poly (p-chlorostyrene) from the surface of ramie fiber via RAFT polymerization. J Appl Polym Sci 117(6):3551–3557 Yi J, Chen J, Liu ZT, Liu ZW (2010) Grafting of polystyrene and poly (p-chlorostyrene) from the surface of ramie fiber via RAFT polymerization. J Appl Polym Sci 117(6):3551–3557
185.
go back to reference Liu X, Chen J, Sun P, Liu ZW, Liu ZT (2010) Grafting modification of ramie fibers with poly (2, 2, 2-trifluoroethyl methacrylate) via reversible addition–fragmentation chain transfer (RAFT) polymerization in supercritical carbon dioxide. React Funct Polym 70(12):972–979CrossRef Liu X, Chen J, Sun P, Liu ZW, Liu ZT (2010) Grafting modification of ramie fibers with poly (2, 2, 2-trifluoroethyl methacrylate) via reversible addition–fragmentation chain transfer (RAFT) polymerization in supercritical carbon dioxide. React Funct Polym 70(12):972–979CrossRef
186.
go back to reference Tastet D, Save M, Charrier F, Charrier B, Ledeuil JB, Dupin JC, Billon L (2011) Functional biohybrid materials synthesized via surface-initiated MADIX/RAFT polymerization from renewable natural woodfiber: grafting of polymer as non leaching preservative. Polymer 52(3):606–616CrossRef Tastet D, Save M, Charrier F, Charrier B, Ledeuil JB, Dupin JC, Billon L (2011) Functional biohybrid materials synthesized via surface-initiated MADIX/RAFT polymerization from renewable natural woodfiber: grafting of polymer as non leaching preservative. Polymer 52(3):606–616CrossRef
187.
go back to reference Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113:200–207CrossRefPubMed Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113:200–207CrossRefPubMed
188.
go back to reference Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv 4(59):31428–31442CrossRef Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv 4(59):31428–31442CrossRef
189.
go back to reference Liu P, Huang XB, Li PF, Li L, Shen J (2014) Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane. Polym Chem 2(41):7222–7231 Liu P, Huang XB, Li PF, Li L, Shen J (2014) Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane. Polym Chem 2(41):7222–7231
190.
go back to reference Stenzel MH, Davis TP, Fane AG (2003) Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. J Mater Chem 13(9):2090–2097CrossRef Stenzel MH, Davis TP, Fane AG (2003) Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. J Mater Chem 13(9):2090–2097CrossRef
191.
go back to reference Hernández-Guerrero M, Davis TP, Barner-Kowollik C, Stenzel MH (2005) Polystyrene comb polymers built on cellulose or poly (styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films. Eur Polym J 41(10):2264–2277CrossRef Hernández-Guerrero M, Davis TP, Barner-Kowollik C, Stenzel MH (2005) Polystyrene comb polymers built on cellulose or poly (styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films. Eur Polym J 41(10):2264–2277CrossRef
192.
go back to reference Fleet R, McLeary JB, Grumel V, Weber WG, Matahwa H, Sanderson RD (2008) RAFT mediated polysaccharide copolymers. Eur Polym J 44(9):2899–2911CrossRef Fleet R, McLeary JB, Grumel V, Weber WG, Matahwa H, Sanderson RD (2008) RAFT mediated polysaccharide copolymers. Eur Polym J 44(9):2899–2911CrossRef
193.
go back to reference Semsarilar M, Ladmiral V, Perrier S (2010) Synthesis of a cellulose supported chain transfer agent and its application to RAFT polymerization. J Polym Sci Polym Phys 48(19):4361–4365CrossRef Semsarilar M, Ladmiral V, Perrier S (2010) Synthesis of a cellulose supported chain transfer agent and its application to RAFT polymerization. J Polym Sci Polym Phys 48(19):4361–4365CrossRef
194.
go back to reference Liu Y, Ladmiral V, Perrier S (2015) Self-assembly and chiroptical property of poly (N-acryloyl-l-amino acid) grafted celluloses synthesized by RAFT polymerization. J Polym Sci Polym Chem 117:312–318 Liu Y, Ladmiral V, Perrier S (2015) Self-assembly and chiroptical property of poly (N-acryloyl-l-amino acid) grafted celluloses synthesized by RAFT polymerization. J Polym Sci Polym Chem 117:312–318
195.
go back to reference Lin C, Jin XS, Zhang XS, Han MM, Ji SX (2013) RAFT synthesis of cellulose-g-polymethylmethacrylate copolymer in an ionic liquid. Carbohydr Polym 127(6):4840–4849 Lin C, Jin XS, Zhang XS, Han MM, Ji SX (2013) RAFT synthesis of cellulose-g-polymethylmethacrylate copolymer in an ionic liquid. Carbohydr Polym 127(6):4840–4849
196.
go back to reference Hufendiek A, Zhan HY, Liu MH, Habibi Y, Fu SY, Lucia LA (2014) Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization. J Appl Polym Sci 15(7):2563–2572 Hufendiek A, Zhan HY, Liu MH, Habibi Y, Fu SY, Lucia LA (2014) Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization. J Appl Polym Sci 15(7):2563–2572
197.
go back to reference Hufendiek A, Trouillet V, Meier MA, Barner-Kowollik C (2014) Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization. Biomacromolecules 15:2563–2572CrossRefPubMed Hufendiek A, Trouillet V, Meier MA, Barner-Kowollik C (2014) Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization. Biomacromolecules 15:2563–2572CrossRefPubMed
198.
go back to reference Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101(12):3661–3688CrossRefPubMed Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101(12):3661–3688CrossRefPubMed
199.
go back to reference Daly WH, Evenson TS, Iacono ST, Jones RW (2001) Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation. Macromol Symp 174:155–163CrossRef Daly WH, Evenson TS, Iacono ST, Jones RW (2001) Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxide mediation. Macromol Symp 174:155–163CrossRef
200.
go back to reference Karaj-Abad SG, Abbasian M, Jaymand M (2016) Grafting of poly [(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite. Carbohydr Polym 152:297–305CrossRefPubMed Karaj-Abad SG, Abbasian M, Jaymand M (2016) Grafting of poly [(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite. Carbohydr Polym 152:297–305CrossRefPubMed
201.
go back to reference Soman S, Chacko AS, Prasad VS (2017) Semi-interpenetrating network composites of poly (lactic acid) with cis-9-octadecenylamine modified cellulose-nanofibers from Areca catechu husk. Compos Sci Technol 141:65–73CrossRef Soman S, Chacko AS, Prasad VS (2017) Semi-interpenetrating network composites of poly (lactic acid) with cis-9-octadecenylamine modified cellulose-nanofibers from Areca catechu husk. Compos Sci Technol 141:65–73CrossRef
202.
go back to reference Roeder RD, Garcia-Valdez O, Whitney RA, Champagne P, Cunningham MF (2016) Graft modification of cellulose nanocrystals via nitroxide-mediated polymerisation. Polym Chem 7(41):6383–6390CrossRef Roeder RD, Garcia-Valdez O, Whitney RA, Champagne P, Cunningham MF (2016) Graft modification of cellulose nanocrystals via nitroxide-mediated polymerisation. Polym Chem 7(41):6383–6390CrossRef
203.
go back to reference Rosen BM, Percec V (2009) Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chem Rev 109(11):5069–5119CrossRefPubMed Rosen BM, Percec V (2009) Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chem Rev 109(11):5069–5119CrossRefPubMed
204.
go back to reference Rosen BM, Jiang X, Wilson CJ, Nguyen NH, Monteiro MJ, Percec V (2009) The disproportionation of Cu (I) X mediated by ligand and solvent into Cu (0) and Cu (II) X2 and its implications for SET-LRP. J Polym Sci Polym Chem 47(21):5606–5628CrossRef Rosen BM, Jiang X, Wilson CJ, Nguyen NH, Monteiro MJ, Percec V (2009) The disproportionation of Cu (I) X mediated by ligand and solvent into Cu (0) and Cu (II) X2 and its implications for SET-LRP. J Polym Sci Polym Chem 47(21):5606–5628CrossRef
205.
go back to reference Kang HL, Liu RG, Huang Y (2013) Synthesis of ethyl cellulose grafted poly(N-isopropylacrylamide) copolymer and its micellization. Acta Chim Sin 71:114–120CrossRef Kang HL, Liu RG, Huang Y (2013) Synthesis of ethyl cellulose grafted poly(N-isopropylacrylamide) copolymer and its micellization. Acta Chim Sin 71:114–120CrossRef
206.
go back to reference Jiang X, Rosen BM, Percec V (2010) Mimicking “nascent” Cu(0) mediated SET-LRP of methyl acrylate in DMSO leads to complete conversion in several minutes. J Polym Sci Polym Chem 48(2):403–409CrossRef Jiang X, Rosen BM, Percec V (2010) Mimicking “nascent” Cu(0) mediated SET-LRP of methyl acrylate in DMSO leads to complete conversion in several minutes. J Polym Sci Polym Chem 48(2):403–409CrossRef
207.
go back to reference Hiltunen MS, Raula J, Maunu SL (2011) Tailoring of water-soluble cellulose-g-copolymers inhomogeneous medium using single-electron-transfer living radical polymerization. Polym Int 60(9):1370–1379 Hiltunen MS, Raula J, Maunu SL (2011) Tailoring of water-soluble cellulose-g-copolymers inhomogeneous medium using single-electron-transfer living radical polymerization. Polym Int 60(9):1370–1379
208.
go back to reference Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J (2010) Poly (N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11(10):2683–2691CrossRefPubMed Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Osterberg M, Laine J (2010) Poly (N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11(10):2683–2691CrossRefPubMed
209.
go back to reference Vlcek P, Raus V, Janata M, Kriz J, Sikora A (2011) Controlled grafting of cellulose esters using SET-LRP process. J Polym Sci Polym Chem 49(1):164–173CrossRef Vlcek P, Raus V, Janata M, Kriz J, Sikora A (2011) Controlled grafting of cellulose esters using SET-LRP process. J Polym Sci Polym Chem 49(1):164–173CrossRef
210.
go back to reference Zhang YW, Jiang M (2005) New approaches to stimuli-responsive polymeric micelles and hollow spheres. Acta Polym Sin 5:650–654 Zhang YW, Jiang M (2005) New approaches to stimuli-responsive polymeric micelles and hollow spheres. Acta Polym Sin 5:650–654
211.
go back to reference Girouard NM, Xu S, Schueneman GT, Shofner ML, Meredith JC (2016) Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Appl Mater Interfaces 8(2):1458–1467CrossRefPubMed Girouard NM, Xu S, Schueneman GT, Shofner ML, Meredith JC (2016) Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Appl Mater Interfaces 8(2):1458–1467CrossRefPubMed
212.
go back to reference Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18(41):5002–5010CrossRef Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18(41):5002–5010CrossRef
213.
go back to reference Hou L, Bian H, Wang Q, Zhang N, Liang Y, Dong D (2016) Direct functionalization of cellulose nanocrystals with polymer brushes via UV-induced polymerization: access to novel heterogeneous visible-light photocatalysts. RSC Adv 6(58):53062–53068CrossRef Hou L, Bian H, Wang Q, Zhang N, Liang Y, Dong D (2016) Direct functionalization of cellulose nanocrystals with polymer brushes via UV-induced polymerization: access to novel heterogeneous visible-light photocatalysts. RSC Adv 6(58):53062–53068CrossRef
214.
go back to reference Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H, Mohammadi M (2017) Poly (propylene imine) dendrimer-grafted nanocrystalline cellulose: doxorubicin loading and release behavior. Polymer 117:287–294CrossRef Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H, Mohammadi M (2017) Poly (propylene imine) dendrimer-grafted nanocrystalline cellulose: doxorubicin loading and release behavior. Polymer 117:287–294CrossRef
215.
go back to reference Dan-hui L, Wei L, Yu-zhen W, Chun-xiang L, Chao-yang D, Ming-hua L (2015) Preparation of cellulose graft copolymer based on the combination of ionic liquids and microwave heating. Mater Res Innov 19:566–569CrossRef Dan-hui L, Wei L, Yu-zhen W, Chun-xiang L, Chao-yang D, Ming-hua L (2015) Preparation of cellulose graft copolymer based on the combination of ionic liquids and microwave heating. Mater Res Innov 19:566–569CrossRef
216.
go back to reference Tsubokawa N, Iida T, Takayama T (2000) Modification of cellulose powder surface by grafting of polymers with controlled molecular weight and narrow molecular weight distribution. J Appl Polym Sci 75(4):515–522CrossRef Tsubokawa N, Iida T, Takayama T (2000) Modification of cellulose powder surface by grafting of polymers with controlled molecular weight and narrow molecular weight distribution. J Appl Polym Sci 75(4):515–522CrossRef
217.
go back to reference Zhao J, Li Q, Zhang X, Xiao M, Zhang W, Lu C (2017) Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites. Carbohydr Polym 157:1419–1425CrossRefPubMed Zhao J, Li Q, Zhang X, Xiao M, Zhang W, Lu C (2017) Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites. Carbohydr Polym 157:1419–1425CrossRefPubMed
218.
go back to reference Qu P, Zhou Y, Zhang X, Yao S, Zhang L (2012) Surface modification of cellulose nanofibrils for poly (lacticacid) composite application. J Appl Polym Sci 125(4):3084–3091CrossRef Qu P, Zhou Y, Zhang X, Yao S, Zhang L (2012) Surface modification of cellulose nanofibrils for poly (lacticacid) composite application. J Appl Polym Sci 125(4):3084–3091CrossRef
219.
go back to reference Peltzer M, Pei A, Zhou Q, Berglund L, Jimenez A (2014) Surface modification of cellulose nanocrystals by grafting with poly (lactic acid). Polym Int 63(6):1056–1062CrossRef Peltzer M, Pei A, Zhou Q, Berglund L, Jimenez A (2014) Surface modification of cellulose nanocrystals by grafting with poly (lactic acid). Polym Int 63(6):1056–1062CrossRef
220.
go back to reference Mulyadi A, Deng Y (2016) Surface modification of cellulose nanofibrils by maleated styrene block copolymer and their composite reinforcement application. Cellulose 23(1):519–528CrossRef Mulyadi A, Deng Y (2016) Surface modification of cellulose nanofibrils by maleated styrene block copolymer and their composite reinforcement application. Cellulose 23(1):519–528CrossRef
221.
go back to reference Li W, Wu Y, Liang W, Li B, Liu S (2014) Reduction of the water wettability of cellulose film through controlled heterogeneous modification. ACS Appl Mater Interfaces 6(8):5726–5734CrossRefPubMed Li W, Wu Y, Liang W, Li B, Liu S (2014) Reduction of the water wettability of cellulose film through controlled heterogeneous modification. ACS Appl Mater Interfaces 6(8):5726–5734CrossRefPubMed
222.
go back to reference Motokawa T, Makino M, Enomoto-Rogers Y, Kawaguchi T, Ohura T, Iwata T, Sakaguchi M (2015) Novel method of the surface modification of the microcrystalline cellulose powder with poly (isobutyl vinyl ether) using mechanochemical polymerization. Adv Powder Technol 26(5):1383–1390CrossRef Motokawa T, Makino M, Enomoto-Rogers Y, Kawaguchi T, Ohura T, Iwata T, Sakaguchi M (2015) Novel method of the surface modification of the microcrystalline cellulose powder with poly (isobutyl vinyl ether) using mechanochemical polymerization. Adv Powder Technol 26(5):1383–1390CrossRef
223.
go back to reference Chen DH, Hsieh CH (2002) Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions. J Mater Chem 12(8):2412–2415CrossRef Chen DH, Hsieh CH (2002) Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions. J Mater Chem 12(8):2412–2415CrossRef
224.
225.
go back to reference Cheong S, Watt JD, Tilley RD (2010) Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2(10):2045–2053CrossRefPubMed Cheong S, Watt JD, Tilley RD (2010) Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2(10):2045–2053CrossRefPubMed
226.
go back to reference Mubeen S, Zhang T, Yoo B, Deshusses MA, Myung NV (2007) Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor. J Phys Chem C111(17):6321–6327 Mubeen S, Zhang T, Yoo B, Deshusses MA, Myung NV (2007) Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor. J Phys Chem C111(17):6321–6327
227.
go back to reference Islam MS, Rahman ML, Yusoff MM, Sarkar SM (2017) Highly active bio-waste cellulose supported poly (amidoxime) palladium (II) complex for Heck reactions. J Clean Prod 149:1045–1050CrossRef Islam MS, Rahman ML, Yusoff MM, Sarkar SM (2017) Highly active bio-waste cellulose supported poly (amidoxime) palladium (II) complex for Heck reactions. J Clean Prod 149:1045–1050CrossRef
228.
go back to reference Kale D, Rashinkar G, Kumbhar A, Salunkhe R (2017) Facile Suzuki-Miyaura cross coupling using ferrocene tethered N-heterocyclic carbene-Pd complex anchored on cellulose. React Funct Polym 116:9–16CrossRef Kale D, Rashinkar G, Kumbhar A, Salunkhe R (2017) Facile Suzuki-Miyaura cross coupling using ferrocene tethered N-heterocyclic carbene-Pd complex anchored on cellulose. React Funct Polym 116:9–16CrossRef
230.
go back to reference Tian J, Peng D, Wu X, Li W, Deng H, Liu S (2017) Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydr Polym 156:19–25CrossRefPubMed Tian J, Peng D, Wu X, Li W, Deng H, Liu S (2017) Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydr Polym 156:19–25CrossRefPubMed
231.
go back to reference Yao Q, Fan B, Xiong Y, Wang C, Wang H, Jin C, Sun Q (2017) Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting. Carbohydr Polym 168:265–273CrossRefPubMed Yao Q, Fan B, Xiong Y, Wang C, Wang H, Jin C, Sun Q (2017) Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting. Carbohydr Polym 168:265–273CrossRefPubMed
232.
go back to reference Wang Y, Zhang X, Zhang X, Zhao J, Zhang W, Lu C (2015) Water repellent Ag/Ag2O@bamboo cellulose fiber membrane as bioinspired cargo carriers. Carbohydr Polym 133:493–496CrossRefPubMed Wang Y, Zhang X, Zhang X, Zhao J, Zhang W, Lu C (2015) Water repellent Ag/Ag2O@bamboo cellulose fiber membrane as bioinspired cargo carriers. Carbohydr Polym 133:493–496CrossRefPubMed
233.
go back to reference Xiao W, Xu J, Liu X, Hu Q, Huang J (2013) Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J Mater Chem B 1(28):3477–3485CrossRefPubMed Xiao W, Xu J, Liu X, Hu Q, Huang J (2013) Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J Mater Chem B 1(28):3477–3485CrossRefPubMed
234.
go back to reference Vosmanská V, Kolářová K, Rimpelová S, Kolská Z, Švorčík V (2015) Antibacterial wound dressing: plasma treatment effect on chitosan impregnation and in situ synthesis of silver chloride on cellulose surface. RSC Adv 5(23):17690–17699CrossRef Vosmanská V, Kolářová K, Rimpelová S, Kolská Z, Švorčík V (2015) Antibacterial wound dressing: plasma treatment effect on chitosan impregnation and in situ synthesis of silver chloride on cellulose surface. RSC Adv 5(23):17690–17699CrossRef
235.
go back to reference Maleki A, Movahed H, Paydar R (2016) Design and development of a novel cellulose/γ-Fe2O3/Ag nanocomposite: a potential green catalyst and antibacterial agent. RSC Adv 6(17):13657–13665CrossRef Maleki A, Movahed H, Paydar R (2016) Design and development of a novel cellulose/γ-Fe2O3/Ag nanocomposite: a potential green catalyst and antibacterial agent. RSC Adv 6(17):13657–13665CrossRef
236.
go back to reference Ashraf S, Sher F, Khalid ZM, Mehmood M, Hussain I (2014) Synthesis of cellulose–metal nanoparticle composites: development and comparison of different protocols. Cellulose 21(1):395–405CrossRef Ashraf S, Sher F, Khalid ZM, Mehmood M, Hussain I (2014) Synthesis of cellulose–metal nanoparticle composites: development and comparison of different protocols. Cellulose 21(1):395–405CrossRef
237.
go back to reference Gopiraman M, Bang H, Yuan G, Yin C, Song KH, Lee JS, Chung IM, Karvembu R, Kim IS (2015) Noble metal/functionalized cellulose nanofiber composites for catalytic applications. Carbohydr Polym 132:554–564CrossRefPubMed Gopiraman M, Bang H, Yuan G, Yin C, Song KH, Lee JS, Chung IM, Karvembu R, Kim IS (2015) Noble metal/functionalized cellulose nanofiber composites for catalytic applications. Carbohydr Polym 132:554–564CrossRefPubMed
238.
go back to reference Maleki A, Jafari AA, Yousefi S (2017) Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr Polym 175:409–416CrossRefPubMed Maleki A, Jafari AA, Yousefi S (2017) Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr Polym 175:409–416CrossRefPubMed
239.
go back to reference Maleki A, Kamalzare M (2014) Fe3O4@cellulose composite nanocatalyst: preparation, characterization and application in the synthesis of benzodiazepines. Catal Commun 53:67–71CrossRef Maleki A, Kamalzare M (2014) Fe3O4@cellulose composite nanocatalyst: preparation, characterization and application in the synthesis of benzodiazepines. Catal Commun 53:67–71CrossRef
240.
go back to reference Xiong R, Wang Y, Zhang X, Lu C, Lan L (2014) In situ growth of gold nanoparticles on magnetic γ-Fe2O3@ cellulose nanocomposites: a highly active and recyclable catalyst for reduction of 4-nitrophenol. RSC Adv 4(13):6454–6462CrossRef Xiong R, Wang Y, Zhang X, Lu C, Lan L (2014) In situ growth of gold nanoparticles on magnetic γ-Fe2O3@ cellulose nanocomposites: a highly active and recyclable catalyst for reduction of 4-nitrophenol. RSC Adv 4(13):6454–6462CrossRef
241.
go back to reference Maleki A, Akhlaghi E, Paydar R (2016) Design, synthesis, characterization and catalytic performance of a new cellulose-based magnetic nanocomposite in the one-pot three-component synthesis of α-aminonitriles. Appl Organomet Chem 30(6):382–386CrossRef Maleki A, Akhlaghi E, Paydar R (2016) Design, synthesis, characterization and catalytic performance of a new cellulose-based magnetic nanocomposite in the one-pot three-component synthesis of α-aminonitriles. Appl Organomet Chem 30(6):382–386CrossRef
242.
go back to reference Maleki A, Nooraie Yeganeh N (2017) Facile one-pot synthesis of a series of 7-aryl-8H-benzo [h] indeno [1,2-b] quinoline-8-one derivatives catalyzed by cellulose-based magnetic nanocomposite. Appl Organomet Chem 31(12):e3814. https://doi.org/10.1002/aoc.3814 Maleki A, Nooraie Yeganeh N (2017) Facile one-pot synthesis of a series of 7-aryl-8H-benzo [h] indeno [1,2-b] quinoline-8-one derivatives catalyzed by cellulose-based magnetic nanocomposite. Appl Organomet Chem 31(12):e3814. https://​doi.​org/​10.​1002/​aoc.​3814
243.
go back to reference El-Nahas AM, Salaheldin TA, Zaki T, El-Maghrabi HH, Marie AM, Morsy SM, Allam NK (2017) Functionalized cellulose-magnetite nanocomposite catalysts for efficient biodiesel production. Chem Eng J 322:167–180CrossRef El-Nahas AM, Salaheldin TA, Zaki T, El-Maghrabi HH, Marie AM, Morsy SM, Allam NK (2017) Functionalized cellulose-magnetite nanocomposite catalysts for efficient biodiesel production. Chem Eng J 322:167–180CrossRef
244.
go back to reference Bhardwaj M, Sharma H, Paul S, Clark JH (2016) Fe3O4@SiO2/EDAC–Pd (0) as a novel and efficient inorganic/organic magnetic composite: sustainable catalyst for the benzylic C–H bond oxidation and reductive amination under mild conditions. New J Chem 40(6):4952–4961CrossRef Bhardwaj M, Sharma H, Paul S, Clark JH (2016) Fe3O4@SiO2/EDAC–Pd (0) as a novel and efficient inorganic/organic magnetic composite: sustainable catalyst for the benzylic C–H bond oxidation and reductive amination under mild conditions. New J Chem 40(6):4952–4961CrossRef
245.
go back to reference Malakootikhah J, Rezayan AH, Negahdari B, Nasseri S, Rastegar H (2017) Glucose reinforced Fe3O4@cellulose mediated amino acid: reusable magnetic glyconanoparticles with enhanced bacteria capture efficiency. Carbohydr Polym 170:190–197CrossRefPubMed Malakootikhah J, Rezayan AH, Negahdari B, Nasseri S, Rastegar H (2017) Glucose reinforced Fe3O4@cellulose mediated amino acid: reusable magnetic glyconanoparticles with enhanced bacteria capture efficiency. Carbohydr Polym 170:190–197CrossRefPubMed
246.
go back to reference Cui G, Liu M, Chen Y, Zhang W, Zhao J (2016) Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater. Carbohydr Polym 154:40–47CrossRefPubMed Cui G, Liu M, Chen Y, Zhang W, Zhao J (2016) Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater. Carbohydr Polym 154:40–47CrossRefPubMed
247.
go back to reference Bajpai S, Chand N, Chaurasia V (2010) Investigation of water vapor permeability and antimicrobial property of zinc oxide nanoparticles-loaded chitosan-based edible film. J Appl Polym Sci 115(2):674–683CrossRef Bajpai S, Chand N, Chaurasia V (2010) Investigation of water vapor permeability and antimicrobial property of zinc oxide nanoparticles-loaded chitosan-based edible film. J Appl Polym Sci 115(2):674–683CrossRef
248.
go back to reference Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113(4):511–519CrossRef Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113(4):511–519CrossRef
249.
go back to reference Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49(11):3471–3482CrossRef Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49(11):3471–3482CrossRef
250.
go back to reference Sanuja S, Agalya A, Umapathym MJ (2015) Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int J Biol Macromol 74:76–84CrossRefPubMed Sanuja S, Agalya A, Umapathym MJ (2015) Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int J Biol Macromol 74:76–84CrossRefPubMed
251.
go back to reference Raguvaran R, Manuja BK, Chopra Thakur MR, Anand T, Kalia A, Manuja A (2017) Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int J Biol Macromol 96:185–191CrossRefPubMed Raguvaran R, Manuja BK, Chopra Thakur MR, Anand T, Kalia A, Manuja A (2017) Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int J Biol Macromol 96:185–191CrossRefPubMed
252.
go back to reference Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Effectof nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22(3):408–413CrossRef Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Effectof nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22(3):408–413CrossRef
253.
go back to reference Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M, Coma V (2017) Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. Int J Biol Macromol 99:530–538CrossRefPubMed Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M, Coma V (2017) Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. Int J Biol Macromol 99:530–538CrossRefPubMed
254.
go back to reference Janpetch N, Saito N, Rujiravanit R (2016) Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 148:335–344CrossRefPubMed Janpetch N, Saito N, Rujiravanit R (2016) Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 148:335–344CrossRefPubMed
255.
go back to reference Balos S, Sidjanin L, Dramicanin M, Labus D, Pilic B, Jovicic M (2016) Modification of cellulose and rutile welding electrode coating by infiltrated TiO2 nanoparticles. Met Mater Int 22(3):509–518CrossRef Balos S, Sidjanin L, Dramicanin M, Labus D, Pilic B, Jovicic M (2016) Modification of cellulose and rutile welding electrode coating by infiltrated TiO2 nanoparticles. Met Mater Int 22(3):509–518CrossRef
256.
go back to reference Ahmadizadegan H (2017) Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane. J Colloid Interface Sci 491:390–400CrossRefPubMedPubMedCentral Ahmadizadegan H (2017) Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane. J Colloid Interface Sci 491:390–400CrossRefPubMedPubMedCentral
257.
go back to reference Galkina O, Ivanov VK, Agafonov AV, Seisenbaeva GA, Kessler VG (2015) Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dermal applications. J Mater Chem B 3(8):1688–1698CrossRefPubMed Galkina O, Ivanov VK, Agafonov AV, Seisenbaeva GA, Kessler VG (2015) Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dermal applications. J Mater Chem B 3(8):1688–1698CrossRefPubMed
258.
go back to reference Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville J, Delville M (2005) Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process. Langmuir 21(4):1516–1523CrossRefPubMed Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville J, Delville M (2005) Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process. Langmuir 21(4):1516–1523CrossRefPubMed
259.
go back to reference Awual MR, Yaita T, Shiwaku H (2013) Design a novel optical adsorbent for simultaneous ultra-trace cerium (III) detection, sorption and recovery. Chem Eng J 228:327–335CrossRef Awual MR, Yaita T, Shiwaku H (2013) Design a novel optical adsorbent for simultaneous ultra-trace cerium (III) detection, sorption and recovery. Chem Eng J 228:327–335CrossRef
260.
go back to reference Awual MR (2017) New type mesoporous conjugate material for selective optical copper (II) ions monitoring & removal from polluted waters. Chem Eng J 307:85–94CrossRef Awual MR (2017) New type mesoporous conjugate material for selective optical copper (II) ions monitoring & removal from polluted waters. Chem Eng J 307:85–94CrossRef
261.
go back to reference Iftekhar S, Srivastava V, Sillanpää M (2017) Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite. Chem Eng J 320:151–159CrossRef Iftekhar S, Srivastava V, Sillanpää M (2017) Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite. Chem Eng J 320:151–159CrossRef
262.
go back to reference Nasir M, Subhan A, Prihandoko B, Lestariningsih T (2017) Nanostructure and property of electrospun SiO2-cellulose acetate nanofiber composite by electrospinning. Energy Procedia 107:227–231CrossRef Nasir M, Subhan A, Prihandoko B, Lestariningsih T (2017) Nanostructure and property of electrospun SiO2-cellulose acetate nanofiber composite by electrospinning. Energy Procedia 107:227–231CrossRef
263.
go back to reference Sankaran KJ, Kunuku S, Sundaravel B, Hsieh PY, Chen HC, Leou KC, Tai NH, Lin IN (2015) Gold nanoparticle–ultrananocrystalline diamond hybrid structured materials for high-performance optoelectronic device applications. Nanoscale 7(10):4377–4385CrossRefPubMed Sankaran KJ, Kunuku S, Sundaravel B, Hsieh PY, Chen HC, Leou KC, Tai NH, Lin IN (2015) Gold nanoparticle–ultrananocrystalline diamond hybrid structured materials for high-performance optoelectronic device applications. Nanoscale 7(10):4377–4385CrossRefPubMed
265.
go back to reference Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779CrossRefPubMed Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779CrossRefPubMed
266.
go back to reference Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44(14):4743–4768CrossRefPubMed Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44(14):4743–4768CrossRefPubMed
267.
go back to reference Qiu J, Kong L, Cao X, Li A, Tan H, Shi X (2016) Dendrimer-entrapped gold nanoparticles modified with β-cyclodextrin for enhanced gene delivery applications. RSC Adv 6(31):25633–25640CrossRef Qiu J, Kong L, Cao X, Li A, Tan H, Shi X (2016) Dendrimer-entrapped gold nanoparticles modified with β-cyclodextrin for enhanced gene delivery applications. RSC Adv 6(31):25633–25640CrossRef
268.
go back to reference Keshipour S, Khezerloo M (2017) Gold nanoparticles supported on cellulose aerogel as a new efficient catalyst for epoxidation of styrene. J Iran Chem Soc 14(5):1107–1112CrossRef Keshipour S, Khezerloo M (2017) Gold nanoparticles supported on cellulose aerogel as a new efficient catalyst for epoxidation of styrene. J Iran Chem Soc 14(5):1107–1112CrossRef
269.
go back to reference Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112(8):4469–4506CrossRefPubMed Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112(8):4469–4506CrossRefPubMed
270.
go back to reference Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles. Chem Rev 287:114–136 Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles. Chem Rev 287:114–136
271.
go back to reference Chen Y, Chen S, Wang B, Yao J, Wang H (2017) TEMPO-oxidized bacterial cellulose nanofibers-supported gold nanoparticles with superior catalytic properties. Carbohydr Polym 160:34–42CrossRefPubMed Chen Y, Chen S, Wang B, Yao J, Wang H (2017) TEMPO-oxidized bacterial cellulose nanofibers-supported gold nanoparticles with superior catalytic properties. Carbohydr Polym 160:34–42CrossRefPubMed
272.
go back to reference Niu T, Xu J, Xiao W, Huang J (2014) Cellulose-based catalytic membranes fabricated by deposition of gold nanoparticles on natural cellulose nanofibres. RSC Adv 4(10):4901–4904CrossRef Niu T, Xu J, Xiao W, Huang J (2014) Cellulose-based catalytic membranes fabricated by deposition of gold nanoparticles on natural cellulose nanofibres. RSC Adv 4(10):4901–4904CrossRef
273.
go back to reference Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B (2012) Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat Commun 3:954–956CrossRefPubMed Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B (2012) Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat Commun 3:954–956CrossRefPubMed
274.
go back to reference Na K, Choi KM, Yaghi OM, Somorjai GA (2014) Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett 14(10):5979–5983CrossRefPubMed Na K, Choi KM, Yaghi OM, Somorjai GA (2014) Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett 14(10):5979–5983CrossRefPubMed
275.
go back to reference Zhang JW, Zhang HT, Du ZY, Wang X, Yu SH, Jiang HL (2014) Water-stable metal–organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun 50(9):1092–1094CrossRef Zhang JW, Zhang HT, Du ZY, Wang X, Yu SH, Jiang HL (2014) Water-stable metal–organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun 50(9):1092–1094CrossRef
276.
go back to reference Torad NL, Li Y, Ishihara S, Ariga K, Kamachi Y, Lian HY, Hamoudi H, Sakka Y, Chaikittisilp W, Wu KCW, Yamauchi Y (2014) MOF-derived nanoporous carbon as intracellular drug delivery carriers. Chem Lett 43(5):717–719CrossRef Torad NL, Li Y, Ishihara S, Ariga K, Kamachi Y, Lian HY, Hamoudi H, Sakka Y, Chaikittisilp W, Wu KCW, Yamauchi Y (2014) MOF-derived nanoporous carbon as intracellular drug delivery carriers. Chem Lett 43(5):717–719CrossRef
277.
go back to reference Küsgens P, Siegle S, Kaskel S (2009) Crystal growth of the metal-organic framework Cu3(BTC)2 on the surface of pulp fibers. Adv Eng Mater 11(1–2):93–95CrossRef Küsgens P, Siegle S, Kaskel S (2009) Crystal growth of the metal-organic framework Cu3(BTC)2 on the surface of pulp fibers. Adv Eng Mater 11(1–2):93–95CrossRef
278.
go back to reference Liang X, Zhang F, Zhao H, Ye W, Long L, Zhu G (2014) A proton-conducting lanthanide metal–organic framework integrated with a dielectric anomaly and second-order nonlinear optical effect. Chem Commun 50(49):6513–6516CrossRef Liang X, Zhang F, Zhao H, Ye W, Long L, Zhu G (2014) A proton-conducting lanthanide metal–organic framework integrated with a dielectric anomaly and second-order nonlinear optical effect. Chem Commun 50(49):6513–6516CrossRef
279.
go back to reference Cook TR, Zheng YR, Stang PJ (2013) Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing andcontrasting the design, synthesis, and functionality of metal–organic materials. J Chem Rev 113(1):734–777CrossRef Cook TR, Zheng YR, Stang PJ (2013) Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing andcontrasting the design, synthesis, and functionality of metal–organic materials. J Chem Rev 113(1):734–777CrossRef
280.
go back to reference Yang Q, Zhang M, Song S, Yang B (2017) Surface modification of PCC filled cellulose paper by MOF-5 (Zn3(BDC)2) metal–organic frameworks for use as soft gas adsorption composite materials. Cellulose 24(7):3051–3060CrossRef Yang Q, Zhang M, Song S, Yang B (2017) Surface modification of PCC filled cellulose paper by MOF-5 (Zn3(BDC)2) metal–organic frameworks for use as soft gas adsorption composite materials. Cellulose 24(7):3051–3060CrossRef
281.
go back to reference Mandal BH, Rahman ML, Yusoff MM, Chong KF, Sarkar SM (2017) Bio-waste corn-cob cellulose supported poly (hydroxamic acid) copper complex for Huisgen reaction: waste to wealth approach. Carbohydr Polym 156:175–181CrossRefPubMed Mandal BH, Rahman ML, Yusoff MM, Chong KF, Sarkar SM (2017) Bio-waste corn-cob cellulose supported poly (hydroxamic acid) copper complex for Huisgen reaction: waste to wealth approach. Carbohydr Polym 156:175–181CrossRefPubMed
Metadata
Title
Modification of Cellulose
Authors
Sajjad Keshipour
Ali Maleki
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_17

Premium Partners