Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 5/2019

28-01-2019

Modifications in structure, surface morphology, optical and electrical properties of ZnO thin films with low boron doping

Authors: Mehnaz Sharmin, A. H. Bhuiyan

Published in: Journal of Materials Science: Materials in Electronics | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Boron doped zinc oxide (ZnO:B) thin films with low B concentration, varied between 0.50 and 1.50 atomic percentages (at%) are prepared at substrate temperatures (TS) between 300 and 450 °C using spray pyrolysis technique. Polycrystalline wurtzite structure is observed in the X-ray diffraction patterns of ZnO:B thin films, where (002) is the predominant peak. Texture coefficient corresponding to (002) peak increases with B concentration from 0.50 to 1.00 at%. Crystallite size is found between 22 and 64 nm. Nanofibrous surface morphology is observed in the field emission scanning electron microscopic images of ZnO:B thin films. The average nanofiber thickness value varies from 198 to 498 nm. Atomic force microscopic images show the nanotip-like topology of ZnO:B thin films. The average surface roughnesses of the films are found in the range of 2.99–12.45 nm. ZnO:B thin films are found to be highly transparent between visible to near infrared region of the electromagnetic spectrum. The highest transmittance of 87% is noticed for the 1.00 at% ZnO:B thin film prepared at the TS of 450 °C. Optical band gaps of ZnO:B thin films vary between 3.15 and 3.31 eV. 1.00 at% ZnO:B thin films prepared at various TS show lower values of the band gap, refractive index and extinction coefficient at the photon wavelength of 750 nm. Electrical resistivity of ZnO:B thin films are found to be between 0.25 × 104 and 1.39 × 104 Ω m. 1.00 at% ZnO:B thin films prepared at various TS show less electrical resistivity. Arrhenius plots of ZnO:B thin films prepared at various TS show two conduction regions and activation energies of ZnO:B thin films are higher for the films deposited at lower TS. ZnO:B thin films show n-type conductivity and carrier concentration increases with the increase of B concentration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Kerli, U. Alver, A. Tanrıverdi, B. Avar, Crystallogr. Rep. 61(6), 946 (2015)CrossRef S. Kerli, U. Alver, A. Tanrıverdi, B. Avar, Crystallogr. Rep. 61(6), 946 (2015)CrossRef
2.
go back to reference R.S. Gaikwad, S.S. Bhande, R.S. Mane, B.N. Pawar, S.L. Gaikwad, S.H. Han, O.S. Joo, Mater. Res. Bull. 47, 4257 (2012)CrossRef R.S. Gaikwad, S.S. Bhande, R.S. Mane, B.N. Pawar, S.L. Gaikwad, S.H. Han, O.S. Joo, Mater. Res. Bull. 47, 4257 (2012)CrossRef
3.
go back to reference C.C. Yu, Y.T. Hsu, S.Y. Lee, W.H. Lan, H.H. Kuo, M.C. Shih, D.J.Y. Feng, K.F. Huang, Jpn. J. Appl. Phys. 52, 065501–065502 (2013)CrossRef C.C. Yu, Y.T. Hsu, S.Y. Lee, W.H. Lan, H.H. Kuo, M.C. Shih, D.J.Y. Feng, K.F. Huang, Jpn. J. Appl. Phys. 52, 065501–065502 (2013)CrossRef
4.
6.
go back to reference K.S. Kim, T.S. Lee, J.H. Lee, B.K. Jeong, Y.J. Cheong, W.M. Baik, Kim, J. Appl. Phys. 100, 063701 (2006)CrossRef K.S. Kim, T.S. Lee, J.H. Lee, B.K. Jeong, Y.J. Cheong, W.M. Baik, Kim, J. Appl. Phys. 100, 063701 (2006)CrossRef
7.
go back to reference M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, J. Mater. Sci. Mater. Electron. 19, 704–708 (2008)CrossRef M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, J. Mater. Sci. Mater. Electron. 19, 704–708 (2008)CrossRef
11.
go back to reference B. Olofinjana, U.S. Mbamara, O. Ajayi, C.L. Martin, E.I. Obiajuuwa, E.O.B. Ajayi, Friction 5, 402 (2017)CrossRef B. Olofinjana, U.S. Mbamara, O. Ajayi, C.L. Martin, E.I. Obiajuuwa, E.O.B. Ajayi, Friction 5, 402 (2017)CrossRef
12.
go back to reference W. Bin, L.I.U. Chaoqian, F.E.I. Weidong, W. Hualin, L.I.U. Shimin, W. Nan, C. Weiping, Chem. Res. Chin. Univ. 30(3), 509 (2014)CrossRef W. Bin, L.I.U. Chaoqian, F.E.I. Weidong, W. Hualin, L.I.U. Shimin, W. Nan, C. Weiping, Chem. Res. Chin. Univ. 30(3), 509 (2014)CrossRef
14.
go back to reference N.L. Tarwal, V.V. Shinde, A.S. Kamble, P.R. Jadhav, D.S. Patil, V.B. Patil, P.S. Patil, Appl. Surf. Sci. 257, 10789 (2011)CrossRef N.L. Tarwal, V.V. Shinde, A.S. Kamble, P.R. Jadhav, D.S. Patil, V.B. Patil, P.S. Patil, Appl. Surf. Sci. 257, 10789 (2011)CrossRef
15.
go back to reference R. Ayouchi, F. Martin, D. Leinen, J.R.R. Barrado, J. Cryst. Growth 247, 497 (2003)CrossRef R. Ayouchi, F. Martin, D. Leinen, J.R.R. Barrado, J. Cryst. Growth 247, 497 (2003)CrossRef
16.
17.
go back to reference S. olansky, Multiple beam interferometry of surfaces and films (Oxford Clarendon Press, London, 1948) S. olansky, Multiple beam interferometry of surfaces and films (Oxford Clarendon Press, London, 1948)
18.
go back to reference C. Barret, T.B. Massalski, Structure of metals (Oxford, Pergamon, 1980) C. Barret, T.B. Massalski, Structure of metals (Oxford, Pergamon, 1980)
19.
go back to reference C. Kittel, Introduction to solid state physics (Wiley, New York, 1976) C. Kittel, Introduction to solid state physics (Wiley, New York, 1976)
20.
go back to reference P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen (Springer, Berlin, 1918) P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen (Springer, Berlin, 1918)
23.
go back to reference A.D. Sathe, E.S. Kim, Proceeding the 7th international conference on solid state sensors and actuators transducers, Yokohoma, Japan, 158 (1993) A.D. Sathe, E.S. Kim, Proceeding the 7th international conference on solid state sensors and actuators transducers, Yokohoma, Japan, 158 (1993)
24.
go back to reference H. Landolt, R. Börnstein, Landolt-Börnstein: numerical data and functional relationships in science and technology, vol. 2 (Springer, Berlin, 1946) H. Landolt, R. Börnstein, Landolt-Börnstein: numerical data and functional relationships in science and technology, vol. 2 (Springer, Berlin, 1946)
25.
go back to reference J.D. Hanawalt, H.W. Rinn, L.K. Frevel, Ind. Eng. Chem. Anal. Ed. 10(9), 457 (1938)CrossRef J.D. Hanawalt, H.W. Rinn, L.K. Frevel, Ind. Eng. Chem. Anal. Ed. 10(9), 457 (1938)CrossRef
26.
go back to reference R.E. Hummel, Electronic properties of materials, 3rd edn. (Springer, New York, 2000) R.E. Hummel, Electronic properties of materials, 3rd edn. (Springer, New York, 2000)
28.
go back to reference W.D. Callister Jr., Fundamentals of materials science and engineering, 5th edn. (Wiley, New York, 2001) W.D. Callister Jr., Fundamentals of materials science and engineering, 5th edn. (Wiley, New York, 2001)
29.
go back to reference L.L. Kazmerski, Polycrystalline and amorphous thin films and devices (Academic Press, New York, 1980) L.L. Kazmerski, Polycrystalline and amorphous thin films and devices (Academic Press, New York, 1980)
30.
go back to reference F. Zahedi, R.S. Dariani, S.M. Rozati, Mat. Sci. Semicon. Proc. 16, 245–249 (2013)CrossRef F. Zahedi, R.S. Dariani, S.M. Rozati, Mat. Sci. Semicon. Proc. 16, 245–249 (2013)CrossRef
31.
go back to reference X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, J. Phys. D Appl. Phys. 39, 4992 (2006)CrossRef X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, J. Phys. D Appl. Phys. 39, 4992 (2006)CrossRef
32.
go back to reference G. Kim, J. Bang, Y. Kim, S.K. Rout, S.I. Woo, Appl. Phys. A 97, 821–828 (2009)CrossRef G. Kim, J. Bang, Y. Kim, S.K. Rout, S.I. Woo, Appl. Phys. A 97, 821–828 (2009)CrossRef
33.
go back to reference S. Singhal, T. Namgyal, S. Bansal, K. Chandra, J. Electromagn. Anal. Appl. 2, 376 (2010) S. Singhal, T. Namgyal, S. Bansal, K. Chandra, J. Electromagn. Anal. Appl. 2, 376 (2010)
34.
36.
go back to reference B.N. Pawar, S.R. Jadkar, M.G. Takwale, J. Phys. Chem. Solids 66, 1779 (2005)CrossRef B.N. Pawar, S.R. Jadkar, M.G. Takwale, J. Phys. Chem. Solids 66, 1779 (2005)CrossRef
38.
go back to reference S. Kim, H. Yoon, D.Y. Kim, S.O. Kim, J.Y. Leem, Opt. Mater. 35(12), 2418 (2013)CrossRef S. Kim, H. Yoon, D.Y. Kim, S.O. Kim, J.Y. Leem, Opt. Mater. 35(12), 2418 (2013)CrossRef
39.
go back to reference S.C. Yadav, M.D. Uplane, Int. J. Eng. Sci. Technol. 4(12), 4893 (2012) S.C. Yadav, M.D. Uplane, Int. J. Eng. Sci. Technol. 4(12), 4893 (2012)
Metadata
Title
Modifications in structure, surface morphology, optical and electrical properties of ZnO thin films with low boron doping
Authors
Mehnaz Sharmin
A. H. Bhuiyan
Publication date
28-01-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 5/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-00781-8

Other articles of this Issue 5/2019

Journal of Materials Science: Materials in Electronics 5/2019 Go to the issue